Quotient Law
Trending Questions
For any two non-zero rational numbers and , is equal to:
If 2(2a+1)×3(3b+2)62=2x×3y
Chose the correct option:
x = 2a – 1, y = 3b
x = 2a + 1, y = 3b + 2
x = 2a + 1, y = 3b
x = 2a + 1, y = 3b
(750)2
18a3b3c2÷6abc=
2a2b2c
3a2b2c
3a2bc
3abc
For any two non-zero rational numbers and , is equal to:
Simplify: a−4 × b3 × c5 × d−7a−7 × b−3 × c2 × d−9
a3b6c3d2
a3b5c3d2
a2b6c3d2
a3b6c3d4
- 102
- 106
- 10−6
- 104
- 4
- 113
- 257
- 72
Find the product of (t+s2) and (t2−s).
t3+s2t2−st−s2
t3+s2t2−st−s3
t3+s2t2−2st−s3
t3+t2−st−s3
624÷69
(30+20)×50 [3 MARKS]
Choose the correct word/answer and fill in the blanks:
and are _________ (same/different)
Evaluate 10−1×103×10−5×103
1
10
100
110
- 316
- 98
- 95
- 310
624÷69
Evaluate (13+23+33+43)−32.
10−1
10−2
10−4
10−3
Evaluate (25)3÷53
- 128
- 256
- 125
- 64
- a−11b−18c15
- a11b18c15
- a−11b18c−15
- a11b18c−15
am ÷ an = amn
True
False
- a11b18c−15
- a11b18c15
- a−11b−18c15
- a−11b18c−15
The value of (4−7 ÷ 4−10 ) × 4−5 is 16−1.
True
False
2×103
15y8 ÷ 5y6 is 3y2
True
False
- 28
- 24
- 215
- -1
- 0
- 1
- 2
Find the value of :
(iii)
Simplify (25÷28)5 × 2−5.
1210
1220
12(−15)
12(−5)
- 14
- 4
- 16
- 4−2
The value of (4−7 ÷ 4−10 ) × 4−5 is 16−1.
True
False