Multiplication of a Binomial by a Trinomial
Trending Questions
Q. Find the maximum number of terms in the product of a binomial by a trinomial.
- 2
- 5
- 6
- 7
Q.
Question 83 (ii)
Multiply the following :
3x2y2z2, 17xyz
Q. Multiply (x2+x+1) by (1−x).
- −x3+2x2−2x+1
- −x3+1
- x3−2x2+2x−1
- x3−1
Q.
Categorize the following expressions based on the number of terms.
a.u2v+2uuv−7uv2b.6x3yz2c.3s2+st+3t3
a – polynomial, b – monomial, c – trinomial
a – trinomial, b – monomial, c – trinomial
a – binomial, b – monomial, c – trinomial
a – binomial, b – trinomial, c – monomial
Q. 2x2+4xy−3x subtracted from 3x−xy+8y2
Q. Question 83 (viii)
Multiply the following:
x2y2z2 and (xy - yz + zx)
Multiply the following:
x2y2z2 and (xy - yz + zx)
Q. State whether True or False.
Divide: −14x6y3−21x4y5+7x5y4 by 7x2y2, then answer is −2x4y−3x2y3+x3y2.
- True
- False
Q. The product of (x2+3x+5) and (x2−1) is
- x4+3x3−4x2−3x−5
- x4+3x3+4x2−3x−5
- x4+3x3+4x2+3x−5
- none of these
Q. Divide :
x5−15x4−10x2 by −5x2
x5−15x4−10x2 by −5x2
Q. State True or False: 3x2−x−4 = (3x−1)(x+4)
- True
- False
Q. If the adjacent sides of a rectangle are (x2−x+2) units and (x2+x−2) units long, find the area of the rectangle.
- (x4−5x3−x2) square units
- (x4−x3−4x2+4) square units
- (x4−x3−x2−4x) square units
- (x4−x2+4x−4) square units
Q. Multiply (2x2−6x+10) by (x+y2) .
- 2x3+12x2y2−6x2−xy2+10y2+10x
- 2x3+2x2y2−6x2+16xy2+10y2+10x
- 2x3+x2y2−6x2−6xy2+10y2
- 2x3+2x2y2−6x2−6xy2+10y2+10x