Solving Inequalities
Trending Questions
Q. Which of the following values of x do not satisfy the inequality x2−3x+2>0 at all?
- −5≤x≤−1
- 1≤x≤2
- 2<x<4
- 5<x≤10
Q. The real values of 'a' for which the quadratic equation 2x2−(a3+8a−1)x+a2−4a=0 possesses roots of opposite signs are given by :
- a > 6
- a > 9
- 0 < a < 4
- a < 0
Q. The solution set of inequality |x -1| + |x + 1| < 4 is
- (2, ∞)
- (−∞, −2)
- (−2, 2)
- (−∞, ∞)
Q. In what range will 'x' lie, if x2 + 10x + 21 ≤ 0?
- x≤−7 & x≥−3
- -7 < x ≤ -3
- -7 ≤ x < -3
- −7≤x≤−3
Q. If x ϵ R, and α=x2(1+x4) then
- 0≤α≤2
- 0≤α≤1
- 0≤α≤14
- 0≤α≤12
Q. What is the range of m, which satisfies 3m2 - 21m + 30 < 0?
- m < 2 or m > 5
- 2 < m < 5
- m > 2
- m < 5
Q. If x satisfies |x - 1| + |x -2| + |x - 3| ≥6, then
- 0≤x≤4
- x≤−2 or x≥4
- x≤0 or x≥4
- x≤−1 or x≥5
Q. What is the range of x for which the expression 19x - 2x2 - 35 is positive?
- x < 7
- x>52
- 52≤x≤7
- 52<x<7
Q. The inequality |2x - 3| < 1 is valid when x lies in the interval :
- (-4, 3)
- (-1, 2)
- (1, 2)
- (3, 4)
Q.
For what values of x will the following inequality hold true 3|a−1|+a2−7>0 ?
(-∞, -1) U (2, ∞)
(-∞, -5) U(2, ∞)
(-∞, -1)U (4, ∞)
(-∞, -5)U(4, ∞)