Standard Values
Trending Questions
Find the value of .
- 45∘
- 30∘
- 60∘
- 90∘
Prove that sin80∘cos10∘ + cos80∘sin10∘ = 1
What is cos 45∘sin 45∘..............
If sinθ=ab, then cosθ is equal to
(A) b√b2−a2
(B) ba
(C) √b2−a2b
(D) a√b2−a2
Area(in cm2) of the sector of angle 60∘ of a circle with radius 10 cm is
52 "]' style="font-size:13px;font-family:arial, sans, sans-serif;">
52 "]' style="font-size:13px;font-family:arial, sans, sans-serif;">
52 "]' style="font-size:13px;font-family:arial, sans, sans-serif;">
52 "]' style="font-size:13px;font-family:arial, sans, sans-serif;">
In an equilateral triangle ABC, the ratio of length of the perpendicular AD to side AB is
1/2
√3/2
√2
√3
ABCD is a rhombus of side 20 cm and has two angles of 60∘ each. The length of the diagonal AC is:
- 10 cm
- 20 cm
- 15 cm
- None of these
In the given figure, ABC is an isosceles right angle triangle, right angled at B. The ratio of the sides AB: BC : AC is _________.
√2:1:1
1:1:√2
√3:2:1
1:2:√3
Evaluate :
cosec31∘−sec59∘
Evaluate the following:
(v) 5cos260∘+4sec230∘−tan245∘sin230∘+cos230∘
If sin B = 1, find the value of B if 0≤B≤90.
60
90
0
45
Evaluate the following:
(iv) (sin30∘+tan45∘−cosec60∘)(sec30∘+cos60∘+cot45∘)
State whether the following are true or false. Justify your answer.
(iv) sinθ=cosθ for all values of θ.
If tan (A + B) = √3 and tan (A - B) = 1√3; 0∘<A+B≤90∘;A>B, find A and B.
Evaluate each of the following
sin 60∘ cos30∘ + cos 60∘ sin 30∘
Evaluate the following:
(ii) 2tan245∘+cos230∘−sin260∘
- 90∘
- 36∘
- 54∘
- 27∘
In triangle ABC, right angled at B, if one angle is 45∘, find the value of sin A and cos C.
2, 2
1√2, 1√2
1√3, 1√3
1, 1
Find the acute angle (θ) at which sinθ and tanθ are equal?
30∘
90∘
0∘
45∘
If cos 3θ= √3/2; 0 < θ < 200, then value of θ is:
12 degrees
0 degrees
15 degrees
10 degrees
- cot θ, sin θ
- tan θ, sec θ
- tan θ, cosec θ
- cot θ, tan θ
Two ships are sailing on either sides of a lighthouse. The angle of elevation of the top of the lighthouse, as observed from the ships, are 60° and 45°, respectively. If the lighthouse is 200 m tall, find the distance between the two ships. (Assume √("3" ) = 1.732)
(i) (cosec θ−cotθ)2=1−cosθ1+cosθ
(ii) cosA1+sinA+1+sinAcosA=2secA
(iii) tanθ1−cotθ+cotθ1−tanθ=1+secθcosec θ[Hint: Write the expression in terms of sinθ and cosθ
(iv) 1+secAsecA=sin2A1−cosA [Hint: Simplify LHS and RHS separately].
(v) cosA−sinA−1cosA+sinA+1=cosec A+cotA, Using the identity cosec2A=1+cot2A
(vi) √1+sinA1−sinA=secA+tanA
(vii) sinθ−2sin3θ2cos3θ−cosθ
(viii) (sinA+cosec A)2+(cosA+secA)2=7+tan2A+cot2A
(ix) (cosec A−sinA)(secA−cosA)=1tanA+cotA[Hint: Simplify LHS and RHS separately]
(x) (1+tan2A1+cot2A)=(1−tanA1−cotA)2=tan2A
In a rectangle ABCD, AB = 20 cm, ∠ BAC = 60∘. Then, side BC =
If α=30∘ and AC = 10 cm then find the length of side BC in cm.
- 5
If a triangle has angles 45∘, 45∘, and 90∘, what is the ratio of the sides of the triangle opposite to these angles respectively?
1:1:√2
√2:1:1
√3:2:1
1:2:√3
- 3
- 2
- 0
- 1
In the given figure, ABC is an isosceles right angle triangle, right angled at B. The ratio of the sides AB: BC : AC is _________.
√3:2:1
1:2:√3
√2:1:1
1:1:√2
The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.