Greatest Integer Function
Trending Questions
Q. The values of x satisfying the inequality 0≤23[x]≤1 is in the interval
- [1, 2)
- [0, 2)
- [1, 3)
Q. Let S be the sum of all x in the interval of [0, 2π] such that 3cotx^2+ cotx +8. = 0, then he value of S/π is
a) 3
b)4
c)5
d)6
Q. 70. If cosx+cos7x+cos3x+cos5x=0 then x= (A)n(pi)/4, n=Z (B)n(pi)/2, n=I (C)n(pi)/8;n+8k, n, z=Z (D)n(pi)/3;n=Z
Q. Let g(x)=1 + x - [x] and f(x) =⎧⎪⎨⎪⎩−1x<00, x=01, x>0 then for all x, f[g(x)] is equal to:
(IIT 2001)
(IIT 2001)
- 1
- x
- f(x)
- g(x)
Q. The domain of the function f(x)=√x2−[x]2 is
( [.] represents the greatest integer function )
( [.] represents the greatest integer function )
- [0, ∞)
- (−∞, 0]
- R
- None of these
Q. If [x]2−7[x]+10>0, then x lies in the interval
(Here, [.] denotes the greatest integer function)
(Here, [.] denotes the greatest integer function)
- [6, ∞)
- (−∞, 2)
- (−∞, 3)
- [5, ∞)
Q. Let f:[2, 3]→B be a function defined by f(x)=[log2[x2+2x−1]], where [.] represents the greatest integer function. If range of f is B, then
- 1∈B
- 2∈B
- 3∈B
- 4∈B
Q. For x∈R, let [x] denote the greatest integer ≤x, then the sum of the series [−13]+[−13−1100]+[−13−2100]+....+[−13−99100] is :
- −135
- −153
- −131
- −133
Q. The domain of the function f(x)=sin(log(x2−4x+4))([x]−1), where [.] denotes the greatest integer function, is
- R−[2, ∞)
- (0, ∞)
- R−[1, ∞)
- R−[1, 2]
Q.
Draw the curve 2x2[x]. Where [.] denotes greatest integer function