Allied Angles
Trending Questions
Q. The value of 2sin(π8)sin(2π8)sin(3π8)sin(5π8)sin(6π8)sin(7π8) is
- 18√2
- 14√2
- 18
- 14
Q. Which of the following is the principal value of cosec−1x
- (−π2, π2)
- (0, π)−{π2}
- [−π2, π2]
- [−π2, π2]−{0}
Q. The principal value of cosec−1(−2) is
[1 mark]
[1 mark]
- −π6
- 5π6
- −π3
- 2π3
Q.
If , then is equal to
Q. The value of (sinπ8+icosπ8)8(sinπ8−icosπ8)8 is
- -1
- 0
- 1
- 2i
Q. The value of sin2π4+sin23π4+sin25π4+sin27π4 is
- 0
- 1
- 2
- 12
Q. Find the degree measure of the angle subtended at the center of a circle of radius 100 cm by an arc of length 22 cm.
(use π=227)
(use π=227)
Q. The value of cotA+tan(180°+A)+tan(90°+A)+tan(360°−A) is
Q. The value of cos−1(cos680∘) is
- 2π9
- −2π9
- 34π9
- π9
Q. If cosA=ncosB and sinA=msinB, then (m2−n2)sin2B=
- 1
- 1+n2
- n2
- 1−n2
Q.
The sum of the series is
Q.
If the arcs of the same length in two circles substend angles 65∘ and 110∘ at the centre, find the ratio of their radii.
Q. The angle subtended by an arc of length 2πr of a circle with radius r equals 2π radians.
- False
- True
Q. If θ=178°, then the value of sinθ√1+cot2θ+cosθ√1+tan2θ is
- 2
- −2
- 0
- 1
Q. The value of sin−1(sin5π6) is
- π6
- 5π6
- 7π6
- −π6
Q. sin−1(1−x)−2sin−1x=π2, then x is equal to
- 12
- 0, 12
- 1, 12
- 0
Q. If in two circles, arcs of the same length subtend angles 60∘ and 75∘ at the centre, find the ratio of their radii.
Q.
The line OA makes an angle of θ=30o with negative x-axis as shown in the figure. Which of the following could be the measure of the angle made by OA with respect to positive x-axis?
−30o
−150o
210o
150o
Q. The arcs of the same length in two circles subtend angles of 28∘ and 35∘ at their centres. Then the ratio of their respective radii is
- 3:4
- 4:3
- 4:5
- 5:4
Q. The value of ⎛⎝1+sin2π9+icos2π91+sin2π9−icos2π9⎞⎠3 is:
- −12(1−i√3)
- 12(1−i√3)
- −12(√3−i)
- 12(√3−i)
Q. For the given table choose the correct option
Column IColumn II(a)The value of cot(41π4) is(p)1(b)The value of sec(−600∘) is(q)2(c)The value of cosec2(41π4) is(r)−2(d)The value of tan(19π4) is(s)−1
Column IColumn II(a)The value of cot(41π4) is(p)1(b)The value of sec(−600∘) is(q)2(c)The value of cosec2(41π4) is(r)−2(d)The value of tan(19π4) is(s)−1
- (a)→(p), (b)→(r), (c)→(q), (d)→(s)
- (a)→(p), (b)→(q), (c)→(r), (d)→(s)
- (a)→(q), (b)→(r), (c)→(p), (d)→(s)
- (a)→(s), (b)→(r), (c)→(q), (d)→(p)
Q. Write the inclination of a line which is Perpendicular to y-axis
Q.
In any ΔABC, ∑(sin2A+sinA+1sinA) is always greater than
In any ΔABC, ∑(sin2A+sinA+1sinA) is always greater than
- 9
- 3
- 27
- 13
Q. Show that (cosecΘ−cotΘ)2=1−cosΘ1+cosΘ
Q. For a circle of radius r=2 m, the angle subtended by an arc of length π2 m will be
π radians
π2 radians
π8 radians
π4 radians
Q. sinxa=cosxb, prove that a sin2x+bcos2x=b.
Q. The value of cotA+tan(180°+A)+tan(90°+A)+tan(360°−A) is
Q. sinx+sin2x=1, then the value of cos12x+3cos10x+3cos8x+cos6x−1 is
- −1
- 0
- 1
- 2
Q. Prove that
cotA+tan(180∘+A)+tan(90∘+A)+tan(360∘−A)=0.
cotA+tan(180∘+A)+tan(90∘+A)+tan(360∘−A)=0.
Q. The value of sin−1(sin2π3) is
- π4
- π2
- π3
- 2π3