Distributive Law
Trending Questions
Q. The expression ∼(∼p→q) is logically equivalent to :
- p∧q
- ∼p ∧q
- ∼p ∧∼q
- p ∧∼q
Q. The negation of the Boolean expression p∨(∼p∧q) is equivalent to:
- p ∨∼q
- ∼p∨∼q
- ∼p∨q
- ∼p∧∼q
Q. ∼(p∨q)∨(∼p∧q) is logically equivalent to ?
- ∼q
- ∼p
- p
- q
Q. For any two statements p and q, the negation of the expression p∨(∼p∧q) is :
- ∼p ∨∼q
- ∼p ∧∼q
- p↔q
- p∨q
Q. Which of the following is equivalent to the Boolean expression p ∧∼q?
- ∼(q→p)
- ∼(p→∼q)
- ∼(p→q)
- ∼p→∼q
Q.
The cube root of
none of these
Q. The negation of the Boolean expression x↔∼y is equivalent to
- (x∧y)∧(∼x ∨∼y)
- (x∧y)∨(∼x ∧∼y)
- (x ∧∼y)∨(∼x ∧y)
- (∼x∧y)∨(∼x ∧∼y)
Q. The negation of the compound proposition p∨(∼p∨q) is
- (p∧∼q)∧∼p
- (p∧∼q)∨∼p
- (p∨∼q)∨∼p
- None of these
Q. The expression ∼(p∨q)∨(∼p∧q) is logically equivalent to
- p
- q
- ∼p
- ∼q
Q. The logical statement ∼(∼p→q)∨(p ∧∼q) is equivalent to
- p
- q
- ∼p
- ∼q
Q. The negation of the logical statement (p→q)→q is
- a tautology
- a fallacy
- ∼(p∨q)
- p∧q
Q. The negation of (p∨q)∧(q∨∼r) is
- (∼p∧∼q)∨(q∧∼r)
- (∼p∧∼q)∨(∼q∧r)
- (∼p∧∼q)∨(∼q∧r)
- (p∧q)∨(∼q∧∼r)
Q. The logical statement ∼(∼p→q)∨(p ∧∼q) is equivalent to
- p
- q
- ∼p
- ∼q
Q. The negation of the compound proposition p∨(∼p∨q) is
- (p∧∼q)∧∼p
- (p∧∼p)∨∼q
- (p∧∼q)∨∼p
- (p∧∼q)∧∼q
Q. ∼((∼p)∧q) is equal to
- p∨(∼q)
- p∨q
- p∧(∼q)
- ∼p∧∼q
Q. The negation of the logical statement (p→q)→q is
- a tautology
- a fallacy
- ∼(p∨q)
- p∧q
Q. Let p, q, r denote the arbitary statements then, the logical equivalance of the statement p⇒(q∨r) is
- (p∨q)⇒r
- (p⇒q)∨(p⇒r)
- (p⇒q)∧(p⇒r)
- (p⇒q)∧(p⇒∼r)
Q. The proposition p→∼(p∧∼q) is equivalent to
- (∼p)∨(∼q)
- (∼p)∧q
- q
- (∼p)∨q
Q. Which of following is the negation of (P ∨∼Q).
- ∼P∨Q
- ∼Q∧P
- ∼P∧Q
- ∼Q∨P
Q. The negation of the statement ∼p∧(p∨q) is
- ∼p∧q
- p ∧∼q
- ∼p∨q
- p ∨∼q
Q. The negation of (p∨q)∧(q∨∼r) is
- (∼p∧∼q)∨(q∧∼r)
- (∼p∧∼q)∨(∼q∧r)
- (∼p∧∼q)∨(∼q∧r)
- (p∧q)∨(∼q∧∼r)
Q. The expression ∼(p∨q)∨(∼p∧q) is logically equivalent to
- ∼p
- q
- p
- ∼q
Q. The Boolean expression ∼(p⇒(∼q)) is equivalent to :
- (∼p)⇒q
- q⇒∼p
- p∧q
- p∨q
Q. Negation of the statement ∼p→(q∨r) is
- ∼p∧(∼q ∧∼r)
- p∧(q∨r)
- ∼p→(q∨r)
- p∨(q∧r)
Q. Which of the following is logically equivalent to ∼(∼p⇒q)
- p∧q
- p∧∼q
- ∼p∧q
- ∼p∧∼q