Expressing x in Terms of y, to Find the Range of a Function
Trending Questions
The range of the function f(x)=x2−xx2+2x is
R−{1}
R−{−12, 1}
None of these
R
- 3
- 4
- 1
- 2
- R
- R
- R−{−1}
- R−{1}
- R−{−2}
- (−∞, 17)∪(7, ∞)
- [17, 7]
- [0, 17]
- (−∞, 7)
Let f:R+→R, where R+ is the set of all positive real numbers, be such that f(x)=logex, Determine
i) The image set of the domain of f
ii) {x:f(x)=−2}
iii) Whether f(xy)=f(x)+f(y) holds.
The range of the function f(x)=x|x| is
R - {0}
R - {-1, 1}
{-1, 1}
None of these
If x is real and k =x2−x+1x2+x+1, then
k∈[13, 3]
k≤13
k≥3
none of these
- R−{1}
- R−{−2}
- R
- R−{−1}
- 1e
- 1e3
- 1e2
- 0
- f is an injection only
- f is a bijection
- f is a surjection
- f is neither an injection nor a surjection
- (−1, 1)
- [0, 2]
- [23, 2]
- [2, 3]
R-{1}- R-{2}
- R
- R-{-1}
- (−1, 1)
- [−1, 1]
- R
- (0, 1)
The range of f(x) = x2+x+1x2+x−1
(−∞, −35] ⋃ [1, ∞)
(−∞, −35] ⋃ (1, ∞)
(−∞, 35) ⋃ (1, ∞)
(−∞, 53] ⋃ [2, ∞)
If y=f(x)=ax−bbx−a, show that x=f(y).
The range of f(x) = x2+x+1x2+x−1
(-∞ , -3/5 ] U (1, ∞)
(-∞ , -3/5 ) U (1, ∞)
(-∞ , -3/5 ] U [1, ∞)
None of these
- R
- R - {1}
- {-1}
- R-{-1}
- R
- R - {1}
- {-1}
- R-{-1}
- R
- (−1, 1)
- [−1, 1]
- (0, 1)
- R−{−1}
- R−{1}
- R−{−2}
- R
The range of f(x) = x2+x+1x2+x−1
(-∞ , -3/5 ] U [1, ∞)
(-∞ , -3/5 ) U (1, ∞)
None of these
(-∞ , -3/5 ] U (1, ∞)
- 5
- 4
- −4
- 3
The range of f(x) = x2+x+1x2+x−1
(−∞, −35] ⋃ [1, ∞)
(−∞, −35] ⋃ (1, ∞)
(−∞, 35) ⋃ (1, ∞)
(−∞, 53] ⋃ [2, ∞)
If , then find the value of each of the following algebraic expressions.