Geometric Interpretation of Def.Int as Limit of Sum
Trending Questions
Q. Define feasible region of a linear programming problem.
Q. Let a be a positive real number such that ∫a0ex−[x]dx=10e−9 where [x] is the greatest integer less than or equal to x. Then a is equal to
- 10+loge3
- 10−loge(1+e)
- 10+loge(1+e)
- 10+loge2
Q. Let I=b∫a(x4−2x2)dx. If I is minimum then the ordered pair (a, b) is :
- (0, √2)
- (−√2, 0)
- (−√2, √2)
- (√2, −√2)
Q. If m=max{∣∣|x−5|−|x−3|∣∣} and n=min{∣∣x−2|+|x−4|},
then the value of m+n is
then the value of m+n is
- 4
- 3
- 5
- 6
Q. If f(x) is a continuous function defined on [a, b] such that f(x)≥0 x∈[a, b] then the area under the curve as the limit of a sum can be given as
(b - a) lim n→∞ 1n[f(a)+f(a+h)...f(a+(n−1)h)]
Where h=b−an & h →0 as n →∞
(b - a) lim n→∞ 1n[f(a)+f(a+h)...f(a+(n−1)h)]
Where h=b−an & h →0 as n →∞
- True
- False
Q. If I is the greatest of the definite integrals
I1=∫10e−xcos2 x dx, I2∫10e−x2 cos2 xdx
I3=∫10e−x2 dx, I4=∫10e−x2/2dx, then
I1=∫10e−xcos2 x dx, I2∫10e−x2 cos2 xdx
I3=∫10e−x2 dx, I4=∫10e−x2/2dx, then
- I=I1
- I=I2
- I=I3
- I=I4
Q. Does there exist a function which is continuous everywhere but not differentiable at exactly tow points? Justify your answer.
Q. Let I=b∫a(x4−2x2)dx. If I is minimum then the ordered pair (a, b) is :
- (−√2, 0)
- (−√2, √2)
- (0, √2)
- (√2, −√2)
Q. If I1=π/2∫0cos(sinx)dx, I2=π/2∫0sin(cosx)dx and I3=π/2∫0cosxdx, then
- I1>I3>I2
- I3>I1>I2
- I11>I2>I3
- I3>I2>I1
Q. If one of the diameters of the curve x2+y2−4x−6y+9=0 is a chord of a circle with centre (1, 1), the radius of this circle is
- 3
- 2
- √2
- 1
Q. If [x] denotes the greater integer less than or equal to x, then the value of ∫51[|x−3|]dx is
- 1
- 2
- 4
- 8
Q.
Let (3, 4, -1) and (-1, 2, 3) are the end points of a diameter of sphere. Then the radius of the sphere is equal to
[Orissa JEE 2003]
1
2
3
9
Q. Let a, b, c be non – zero real numbers such that
∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx.
Then the quadratic equation ax2+bx+c=0 has
∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx.
Then the quadratic equation ax2+bx+c=0 has
- No root in (0, 2)
- At least one root in (0, 2)
- A double root in (0, 2)
- Two imaginary roots
Q. The integral of ∫dxx13(x6−1) is:
- 16ln∣∣∣x6−1x6∣∣∣+c
- 16[ln∣∣∣x6−1x6∣∣∣+x−6+12x−12]+c
- 16[ln∣∣∣x6−1x6∣∣∣+x−6+x−12]+c
- 16[ln∣∣∣x6−1x6∣∣∣+x−6+14x−12]+c
Q. Let a, b, c be non – zero real numbers such that
∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx.
Then the quadratic equation ax2+bx+c=0 has
∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx.
Then the quadratic equation ax2+bx+c=0 has
- At least one root in (0, 2)
- A double root in (0, 2)
- No root in (0, 2)
- Two imaginary roots
Q. The value of ∫20(x−log2a)dx=2log2(2a) for which of the following conditions?
- a>0
- a>2
- a=4
- a=8
Q. Let a, b, c be non – zero real numbers such that
∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx.
Then the quadratic equation ax2+bx+c=0 has
∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx.
Then the quadratic equation ax2+bx+c=0 has
- Two imaginary roots
- No root in (0, 2)
- At least one root in (0, 2)
- A double root in (0, 2)
Q. If the value of ∫(sinn3x+cosn3x)dx=x+C, then the value of n is
(where C is constant of integration)
(where C is constant of integration)
Q. ∫π20 log(tan x+cot x)dx=
- π log 2
- −π log 2
- −π2 log 2
- π2 log 2
Q. ∫π20 log(tan x+cot x)dx=
- π log 2
- −π log 2
- −π2 log 2
- π2 log 2
Q. If I1=∫π/20cos(sinx)dx ; I2=∫π/20sin(cosx)dx and I3=∫π/20cosxdx, then
- I1>I3>I2
- I3>I1>I2
- I1>I2>I3
- I3>I2>I1
Q. Let f(a, b)=∫ba(x2−4x+3)dx, (b>a) then
- f(a, 3) is least when a=1
- f(4, b) is an increasing function ∀b≥4
- f(0, b) is least for b=2
- min{f(a, b)}=−43∀a, b∈R
Q. Let a, b, c be non-zero real numbers such the : ∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx, then the quadratic equation ax2+bx+c=0 has
- no root in (0, 2)
- atleast one root in (0, 2)
- a double root in (0, 2)
- none
Q. Consider the integral I=∫π0ln(sinx)dx.What is ∫π20 ln (sinx)dx equal to?
- 4I
- 2I
- I
- I2
Q. Let a, b, c be non-zero real numbers such that ∫10(1+cos8x)(ax2+bx+c)dx=∫20(1+cos8x)(ax2+bx+c)dx then the quadratic equation ax2+bx+c=0 has-
- a double root in (0, 2)
- atleast one root (0, 2)
- no roots in (0, 2)
- none
Q. Let f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x2+x, −1≤x<01, x=0log12(x+12), 0<x<32
- No global minima occurs
- No global maxima occurs
- Global minima will occur at x=−12
- Global maxima will occur at x=0 and equal to 1
Q. ∫π20 log(tan x+cot x)dx=
- π log 2
- −π log 2
- −π2 log 2
- π2 log 2
Q.
Consider the integrals I1=∫10e−xcos2xdx, I2=∫10e−x2cos2xdx, I3=∫10e−xdx and I4=∫10e−(1/2)x2dx. The greatest of these integrals is
- I4
- I3
- I1
- I2
Q. ∫dxtanx+cotx=
- −cos2x4+c
- sin2x4+c
- −sin2x4+c
- cos2x4+c
Q. If f(x) is a continuous function defined on [a, b] such that f(x)≥0 x∈[a, b] then the area under the curve as the limit of a sum can be given as
(b−a)limn→∞1n[f(a)+f(a+h)...f(a+(n−1)h)]
Where h=b−an and h →0 as n →∞
(b−a)limn→∞1n[f(a)+f(a+h)...f(a+(n−1)h)]
Where h=b−an and h →0 as n →∞
- True
- False