Higher Order Derivatives
Trending Questions
Q. If y2=p(x) is a polynomial of degree 3, then 2ddx [y3d2ydx2] is equal to
- p (x). p"' (x)
- None of these
- p"' (x) + p' x
- p''(x). p"'(x)
Q. If y=tan−1(loge(e/x2)loge(ex2))+tan−1(3+2logex1−6logex), then d2ydx2 is
- -1
- 2
- 1
- 0
Q. If f(x)=(1+x)n, then the value of f(0)+f′(0)+f′′(0)2!+.....+fn(0)n! is
- 2n−1
- None of these
- n
- 2n
Q. If d2xdy2(dydx)3+d2ydx2=k, then k is equal to
- 0
- 1
- 2
- None of these
Q. If y=(ax+bcx+d) , then 2dydx.d3ydx3 is equal to
- (d2ydx2)2
- 3d2ydx2
- 3(d2ydx2)2
- 3d2xdy2
Q. If y2=ax2+bx+c, then y3.d2ydx2 is
- a function of y only
- a function of x and y
- a constant
- a function of x only
Q. If √(x2+y2)=a.etan−1(y/x) a>0, then y"(0) is equal to
aeπ/2- −2ae−π/2
- 2ae−π/2
- Does not exist
Q. If y1/n={x+√(1+x2)}, then(1+x2)y2+xy1 is equal to
- n2y
- ny2
- n2y2
- None of these
Q. If y=ln(xa+bx)x, then x3d2ydx2 is equal to
- (dydx−y)2
- (dydx+x)2
- (xdydx−y)2
- (xdydx+y)2
Q. The differential equation of the family of the curves y=ex(Acosx+Bsinx), where A and B are arbitrary constants is
- d2ydx2+(dydx)2+y=0
- d2ydx2−2dydx+2y=0
- d2ydx2+2dydx−2y=0
- d2ydx2−2dydx+y=0