Iota
Trending Questions
Q. If matrix A is non-singular and satisfies A2−A+I=O, then the inverse of A is equal to
- A−2
- A+I
- I−A
- A−I
Q. If x = 3 + i, then x3+3x2−8x+15 =
[UPSEAT 2003]
[UPSEAT 2003]
- 6
- 10
- -18
- -15
Q. If n is a positive integer, then (1+i1−i)4n+1 =
- 1
- -i
- -1
- i
Q.
Write the value of √−25×√−9.
Q.
If , then is equal to
None of these
Q.
The value of i1+3+5+......+(2n+1) is
1 if n is even, - 1 if n is odd
1 if n is odd, - 1 if n is even
i if n is even, - 1 if n is odd
i if n is even, - i if n is odd
Q. If (1+i1−i)m=1, then the least integral value of m is
[IIT 1982; MNR 1984; UPSEAT 2001; MP PET 2002]
[IIT 1982; MNR 1984; UPSEAT 2001; MP PET 2002]
- 2
- 4
- None of these
- 8
Q. If z=cosθ+isinθ, then
Q.
Evaluate using suitable identity
Q.
Which of the following statements is true and which is false? justify each false statement with an example.
For any integer a,
- True
- False
Q. If (1+i1−i)m=1, then the least positive integral value of m is
- 1
- 2
- 3
- 4
Q. Find the smallest positive integer n, for which (1+i1−i)n=1.
Q. If x=3+i then x3−3x2−8x+15=
- 6
- 10
- -15
- -18
Q. If In=∫xn√a2−x2dx and (n+k)⋅In=−xn−1(a2−x2)p+(n−1)a2⋅In−2, then 3k−2p=
(where m, n∈N;m, n≥2)
(where m, n∈N;m, n≥2)
Q. If (1−i)n=2n, thenn=
[RPET 1990]
[RPET 1990]
0
- None of these
1
- -1
Q.
If (1+i1−i)m = 1 then the least integral value of m is
2
4
8
None of these
Q. Find the value of: i2+i4+i6 +..... upto (2n+1) terms.
- i
- −i
- 1
- −1
Q. Let n be a positive integer. Then (i)4n+1+(−i)4n+5=
- 2i
- −i
- 0
- i
Q. Multiply (2√−3+3√−2)by(4√−3−5√−2)
Q. The smallest positive integral value of n for which [1−i1+i]n is purely imaginary with positive imaginary part is
- 1
- 5
- none of thees
- 3
Q. Find the smallest positive integer value of n for which (1+i)n(1−i)n−2 is a real number.
Q. √−8−6i =
Q. The smallest positive integral value of n for which (1+i)2n=(1−i)2n is
- 4
- 8
- 2
- 12
Q.
Differentiate given problems w.r.t.x.
(3x2−9x+5)9.
Q.
If sin θ + cos θ = a, cos θ - sin θ = b, then sin θ (sin θ - cos θ ) + sin2θ(sin2θ−cos2θ)+sin3θ(sin3θ−cos3θ)+ . . .. . is equal to
Q. ∫∞0[e|−x|]dx is equal to (where [.] denotes the greatest integer function)
Q. Find the value of x3+7x2−x+16, when x=1+2i.
Q. Find the value:
(1+i)12+(1−i)12, i=√−1.
Q. Show that 1+i10+i20+i30 is a real number
Q. Simplify √56−2405