Logarithm of a Complex Number
Trending Questions
Q.
If , then equals
Q.
Find the general value of loge(i).
n I
n I
n I
n I
Q. Let S={1, 2, 3}. Determine whether the functions f:S→S defined as below has inverse. Find f−1, if it exists.
(i) f={(1, 1), (2, 2), (3, 3)}
(ii) f={(1, 2), (2, 1), (3, 1)}
(iii) f={(1, 3), (3, 2), (2, 1)}
(i) f={(1, 1), (2, 2), (3, 3)}
(ii) f={(1, 2), (2, 1), (3, 1)}
(iii) f={(1, 3), (3, 2), (2, 1)}
Q.
If the sum of the infinite series is
Q. The general value of log(1+i)+log(1−i) is
- log2+i2kπ, k∈Z
- log√2+i2kπ, k∈Z
- 2log2+i2kπ, k∈Z
- log3+i2kπ, k∈Z
Q. log(−1+√3i) can be expressed in cartesian form as
- ln2−(2π3)i
- ln2+(2π3)i
- ln2−(π3)i
- ln2+(π3)i
Q. If |z+4|≤3, then the maximum value of |z+1| is
Q. If z=z(x) and (2+cosx)dzdx+(sinx)⋅z=sinx, z(x)>0 and z(π2)=3, then z(π3) is
- 72
- 32
- 52
- 12
Q. Detemine if f defined by f(x)=⎧⎨⎩x2sin1x, if x≠00, if x=0 is a continuous function?
Q. If x0 is the solution of the equation 21+(log2x)2+(xlog2x)2=3, then the value of sin−1(x0)+tan−1(2x02−(x0)2)+cot−1(2) equals
- π
- 5π4
- 3π2
- 3π4
Q. logπ4(−1+√3i) can be expressed in cartesian form as
- ln2+(2π3)ilnπ4
- ln2−(2π3)ilnπ4
- ln2+(π3)ilnπ2
- ln2−(2π3)ilnπ2
Q. The expression tan(iloge(2−3i2+3i)) is equal to
- −123
- −32
- −125
- 0
Q.
If z = ii . Express logez in A+iB form.Find the value of A and B.
A = , B =
A = 0 , B =
A = , B = 0
A = , B =
Q.
If , how do you use the reciprocal identity to find ?
Q. If x=−9 is a root of
∣∣ ∣∣x372x276x∣∣ ∣∣=0,
then other two roots are
∣∣ ∣∣x372x276x∣∣ ∣∣=0,
then other two roots are
Q. If z=(1−i)−i, then the correct option(s) is/are
- Re(z)=e−π4cos(log2)
- Im(z)=−e−π4sin(12log2)
- Im(z)=−e−π4sin(log2)
- Re(z)=e−π4cos(12log2)
Q. log(−1+√3i) can be expressed in cartesian form as
- ln2−(2π3)i
- ln2+(2π3)i
- ln2−(π3)i
- ln2+(π3)i
Q. The value of log2(−3) is
- log3+2iπlog2
- log2−iπlog3
- log3+iπlog2
- log2+iπlog3
Q.
What is the value of sin(logeii) ?
0
1
-1
2
Q.
Find the value of i.ii is _______.
Q.
Find the value of i.ii is _______.
i.eπ2
i.e−π2
i.eπ4
i.e−π4
Q. The value of log(ii) is
- −π2
- π2
- −π
- π
Q. Given that sinhx=512, find the values of coshx
Determine the value of x as a natural logarithm
Determine the value of x as a natural logarithm
Q. The value of z satisfying the equation logz+logz2+...+logzn=0
- cos4mπ(n(n+1)−isin4mπn(n+1), m=1, 2, ....
- cos4mπn(n+1)+isin4mπn(n+1), m=1, 2, ...
- 0
- sin4mπn(n+1)+icos4mπn(n+1), m=1, 2, ....
Q. limn→∞{logn−1(n)logn(n+1)logn+1(n+2)……log(nk−1)(nk)} is equal to
- n
- k
- None of these
Q.
The locus of z satisfying the inequality log13|z+1| > log13|z-1| is
None of these
R(z)<0
R(z)>0
I(z)<0
Q. If A1A2A3...An be a regular polygon of n sides and
1A1A2=1A1A3+1A1A4, then
1A1A2=1A1A3+1A1A4, then
- n=5
- n=6
- n=7
- none of these.
Q. log(−1+√3i) can be expressed in cartesian form as
- ln2−(2π3)i
- ln2+(2π3)i
- ln2−(π3)i
- ln2+(π3)i
Q. logπ4(−1+√3i) can be expressed in cartesian form as
- ln2+(2π3)ilnπ4
- ln2−(2π3)ilnπ4
- ln2+(π3)ilnπ2
- ln2−(2π3)ilnπ2
Q. If f′′(x)=cos(logx)x, f′(1)=0 and y=f(2x+33−2x) then dydx is equal to
- (sin(logx))1cosx
- sin(log(2x+33−2x))
- 12(3−2x)2sin(log(2x+33−2x))
- None of these