Property 2
Trending Questions
Q.
Let denote the greatest integer less than or equal to . Then the value of is.
Q.
If , then maximum value of is
Q.
if x=√asin−1t, y=√acos−1t, then show that dydx=−yx.
Q. If y=cosx∘, then dydx=
- −sinx∘
- 1
- −π180sinx∘
- 180πsinx∘
Q. If ∫f(x)sinxcosxdx=12(b2−a2)logf(x)+c, where c is the constant of integration, then f(x)=
- 2(b2−a2)sin2x
- 2absin2x
- 2(b2−a2)cos2x
- 2abcos2x
Q. ∫2x+1−5x−110xdx is equal to
(where C is constant of integration)
(where C is constant of integration)
- 2(15)xln(15)−15(12)xln(12)+C
- 3(15)xln(15)−15(12)xln(12)+C
- 4(15)xln(15)−15(12)xln(12)+C
- 5(15)xln(15)−15(12)xln(12)+C
Q. Function f(x)={(log22x)logx8 ;x≠1(k−1)3 ;x=1
is continuous at x=1, then k=____
is continuous at x=1, then k=____
- e+1
- e13
- e3
- e−1
Q.
Integrate .
Q. Find the principal value of tan−1(−1).
Q. Let f:R→R be a continuous function which satisfies f(x)=x∫0f(t)dt. Then the value of f(loge5) is
- 0 (Zero)
- 2
- 5
- 3
Q. The angle between the curves y=x2 and x=y2 at (1, 1) is
- 90∘
- tan−1(43)
- tan−1(1)
- tan−1(34)
Q. If the function f defined on (π6, π3) by f(x)=⎧⎨⎩√2cosx−1cotx−1, x≠π4k, x=π4, is continuous, then k is equal to:
- 2
- 12
- 1
- 1√2
Q.
If , then the value of is
Q. ∫1tan2x+sec2xdx is equal to
(where C is constant of integration)
(where C is constant of integration)
- 1√2tan−1(√2tanx)−tan−1(tanx)+C
- 1√2tan−1(√2tanx)−tan−1(√2tanx)+C
- √2tan−1(√2tanx)−tan−1(tanx)+C
- √2tan−1(√2tanx)−tan−1(√2tanx)+C
Q. Find the integral:
∫(4e3x+1)dx
∫(4e3x+1)dx
Q. If ∫dxsinx⋅cosx(tan9x+1)=1kln∣∣∣(sinx)9(sinx)9+(cosx)9∣∣∣+C, then the value of k2+1 is:
(where C is integration constant)
(where C is integration constant)
Q.
Evaluate
Q.
Find the integral:
∫cos√xdx.Q.
If where is real constant, then
Q. If x=logt and y=t2−1, then y′′(1) at t=1 is
- 4
- 2
- 3
- None of these
Q. The value of the integral 10∫4[x2][x2−28x+196]+[x2] dx, where [x] denotes the greatest integer less than or equal to x, is
Q. if a function f(x) is discontinuous in the interval (a, b) then ∫baf(x)dx never exists.
- True
- False
Q.
The number of distinct real roots of ∣∣ ∣∣sin xcos xcos xcos xsin xcos xcos xcos xsin x∣∣ ∣∣=0 in the interval −π4≤x≤π4 is
(a) 0
(b) 2
(c) 1
(d) 3
Q. If In=∫cotnx dx, then I0+I1+2(I2+I3)+I4+I5=
(where C is integration constant)
(where C is integration constant)
- −[cotx+cot2x2+cot3x3+cot4x4]+C
- −[cotx+cot3x3]+C
- −[cot4x4+cot2x2]+C
- −[cotx+cot3x3+cot5x5]+C
Q.
Evaluate the integrals using substitution.
∫201x+4−x2dx.
Q. Let f be a twice differentiable function such that f′′(x)+f′(x)=2e−x, f(0)=0, and f′(0)=−2.
Then the area(in sq. units) of region enclosed by y=f(x) and x−axis is
Then the area(in sq. units) of region enclosed by y=f(x) and x−axis is
Q.
Solve:
∫π20sinxdx9+cos2x
Q.
Evaluate the integrals using substitution.
∫20x√x+2dx.
Q. A point of discontinuity of f(x)=tanx is
- x=π3
- x=0
- x=π2
- x=π4