Sign of Quadratic Expression
Trending Questions
- (0, 3)
- [0, 3]
- (0, 3]
- [0, 3)
Consider the two sets: both the roots of are real and Which of the following is not true?
Consider the function where . If has all its roots imaginary, then the roots of are
real and distinct
imaginary
equal
rational and equal
Which among the following conclusions is/are correct?
- a−b+cabc=0
- abc(9a+3b+c)<0
- a+3b+9cabc<0
- abc(a−3b+9c)>0
- 2
- 3
- 5
- 6
- [a+ib−c−idc−ida−ib]
- [a−ibc+id−c+ida+ib]
- [a−ib−c−idc−ida+ib]
- [a+ibc+idc−ida−ib]
- (−∞, 2)
- ϕ
- (14−√962, 14+√962)
- (14−√962, 2)
The equation 12x4−56x3+89x2−56x+12=0
has all roots integral
has all roots irrational
two roots real, two roots imaginary
has all roots rational
- a and c are of the same sign.
- b and c are of the same sign.
- a and b are of the same sign.
- a, b and c are of the same sign.
- (0, 1)
- [0, 1)
- R
- [0, 1]
- c
- a−ba+b
- 1c
- a+ba−b
- 0
- 11+e
- e
- 1/e
- always positive
- always negative
- equal to zero
- can be positive or negative
- 0
- 4
- 1
- 2
- f(x)+g(x)=0 for some x
- f(x)a+g(x)A>0 ∀ x∈R
- f(x)a+g(x)A>0 for some x
- Roots of equation af(x)+Ag(x)=0 are real
- x∈ϕ
- x∈R−
- x∈W
- x∈R+
p1>p2>p3>....>pn>0 such that p1+p2+p3+...+pn=1.
Also, F(x)=(p1ax1+p2ax2+...+pnaxn)1/x
- p1lna1+p2lina2+...+pnlnan
- ap11+ap22+.....+apnn
- ∑nr=1arpr
- ap11⋅ap22....apnn
- Onto but not one - one
- One - one but not onto
- Onto as well as one - one
- Neither onto nor one - one
Column−I Column−II(P)The shortest distance between(1)6 origin and the curve is x2+y2+xy=60 is(Q)The value of ∫2011−2011dx1+x9+√1+x18−2011 is(2)0(R)On[0, 2]the maximum value of(3)3 f(x)=max{x, x−1, 3x}is (S)Letf:R→R be given by(4)√40 f(x)={|x−[x]|when[x] is odd |x−[x]−1when[x] is even Thenthevalueof∫4−2 f(x)dx−3 is
P-2, Q-1, R-3, S-4
P-2, Q-4, R-1, S-4
P-4, Q-2, R-1, S-1
P-4, Q-3, R-1, S-2
- x∈ϕ
- x∈W
- x∈R−
- x∈R+
- 4
- 5
- 0
- 11
If the roots of the equation ax2+bx+a21+b21+c21−a1b1−a1c1−b1c1=0 are non real then
2(a−b)+∑(a1−b1)2>0
2(b−a)+∑(a1+b1)2=0
2(b−a)+∑(a1+b1)2<0
2(a−b)+∑(a1+b1)2=0
- a=1
- a>1
- 0<a<1
- 0<a≤1
- −3
- 1
- −1
- 2
- 4
- −6
- −1
- 0
f(x)=x2+5|x|+6
- y>0∀xϵ(−∞, 2)∪(3, ∞)y<0∀xϵ(2, 3)y=0∀xϵ2, 3
- y>0∀xϵ(−∞, −3)∪(−2, 2)∪(3, ∞)y<0∀xϵ(−3, −2)∪(2, 3)y=0∀xϵ{−3, −2, 2, 3}
- y>0∀xϵR
- y>0∀xϵ(−∞, −3)∪(−2, ∞)y<0∀xϵ(−3, −2)y=0∀xϵ{−3, −2}
- a<0, b<0, c<0
- a<0, b>0, c<0
- a<0, b<0, c>0
- a>0, b<0, c<0
- limn→∞xn=∞
- limn→∞xn=√3
- limn→∞xn=√3+√2
- limn→∞xn=√5
- k=1
- k>1
- 0<k<1