Sin2A and Cos2A in Terms of tanA
Trending Questions
Q.
If and , then is equal to
Q.
Prove that cot (π4−2cot−1 3)=7
Q.
The value of is
Q.
Prove that:
cos 4A=1−8 cos2 A+8 cos4 A
Q. Let α and β be nonzero real numbers such that 2(cosβ−cosα)+cosαcosβ=1. Then which of the following is/are true?
- tan(α2)+√3tan(β2)=0
- √3tan(α2)+tan(β2)=0
- tan(α2)−√3tan(β2)=0
- √3tan(α2)−tan(β2)=0
Q. If cosθ−sinθ=15, where 0<θ<π2
List IList II(1)(cosθ+sinθ)2(p)45(2)sin2θ(q)710(3)cos2θ(r)2425(4)cosθ(s)725
Which of the following is the correct combination?
List IList II(1)(cosθ+sinθ)2(p)45(2)sin2θ(q)710(3)cos2θ(r)2425(4)cosθ(s)725
Which of the following is the correct combination?
- 1→s, 2→p, 3→r, 4→q
- 1→p, 2→s, 3→r, 4→p
- 1→q, 2→s, 3→r, 4→p
- 1→q, 2→r, 3→s, 4→p
Q.
If α and β are acute angles satisfying cos 2α=3 cos 2β−13−cos 2β, then tan α =
√2 tan β
1√2 tan β
√2 cot β
1√2 cot β
Q. For any angle θ, In a ΔABC, bcos(C+θ)+ccos(B−θ) is equal to
- asinθ
- acosθ
- atanθ
- acotθ
Q. Let x, y be real numbers such that xcos239∘=tan26∘cot39∘tan86∘cos78∘tan34∘ and ycos81∘=cos36∘−sin36∘. Then the value of x+y2 is
- 4
- 5
- 10
- 15
Q. The value of cot2π12−tan2π12 is
- 4√3
- 8√3
- 2√3
- 8√3
Q. Let α and β be nonzero real numbers such that 2(cosβ−cosα)+cosαcosβ=1. Then which of the following is/are true?
- tan(α2)+√3tan(β2)=0
- √3tan(α2)+tan(β2)=0
- tan(α2)−√3tan(β2)=0
- √3tan(α2)−tan(β2)=0
Q. There exists a positive real number x satisfying cos(tan−1x)=x. Then the value of cos–1(x22) is
- 2π5
- 4π5
- π10
- π5
Q. If f(x)=1+cosx+cos2x+⋯∞, then f(x)+f(π2+x)+f(π2−x)+f(π−x) equals
- sin22xcos22x
- 2sec2x+cos2x
- 2sec2xcsc2x
- 2(sin2x+csc2x)
Q. If tan x=2ba−c(a≠c), y=a cos2 x+2b sin x cos x+c sin2 x and z=a sin2 x−2b sin x cos x+cos2 x, then
Q.
Solution of equation tan(cos−1x)=sin[cot−112] is
- None of these