Sum of Binomial Coefficients with Alternate Signs
Trending Questions
Q. Find r if (i) 5Pr=2 6Pr−1 (ii) 5Pr= 6Pr−1
Q. Find the value of n such that
(i) nP5=42 nP3, n>4
(ii) nP4n−1P4=53, n>4
(i) nP5=42 nP3, n>4
(ii) nP4n−1P4=53, n>4
Q. Find n if n−1P3:nP4=1:9.
Q. The coefficient of xk in 1+(1+x)+(1+x)2+⋯+(1+x)n, where 0≤k≤n is
- n−1Ck−1
- nCk
- n+1Ck+1
- n+1Ck
Q. If (1+x+x2)8=a0+a1x+a2x2+⋯+a16x16 for all real x, then a5 is equal to
Q. If nPr= nPr+1 and nCr= nCr−1, then the value of r is equal to
- 4
- 3
- 2
- 1
Q.
If , where and , then is equal to:
Q. If (1+x)n=C0+C1x+C2x2+C3x3+⋯+Cnxn, then C0C2+C1C3+C2C4+⋯+Cn−2Cn=
- (2n)!(n!)2
- (2n)!(n−1)!(n+1)!
- (2n)!(n−2)!(n+2)!
- None of these
Q. If C0, C1, C2, …, Cn denote the binomial coefficients respectively in (1+x)2020, then
- C0−C12+C23−C34+…+C20202021=12021
- C0+C12+C23+C34+…+C20202021=22020−12021
- C0+C23+C45+…+C20202021=220202021
- C12+C34+…+C19992020=220202021
Q. Let a1, a2, a3…, an be in A.P. and a3, a5, a8, b1, b2, b3, …, bn be in G.P. If a9=40, then
- 9∑i=1a2i=6144
- ∞∑i=11bi=118
- 9∑i=1a2i=6278
- ∞∑i=11bi=128
Q. The value of 15C8+15C9−15C6−15C7 is
Q. If C0, C1, C2, …, Cn denotos the binomial coefficients in the expansion of (1+x)n, and 13⋅C1+23⋅C2+33⋅C3+…+n3 Cn=1λ(n2)(n+μ)⋅2n, then λ+μ=
Q. The value of 15C20− 15C21+ 15C22−⋯− 15C215 is
- 15
- −15
- 0
- 51
Q. The value of 30C0− 30C12+ 30C23−⋯⋯+ 30C3031 is
- 130
- 3031
- 3130
- 131
Q. If C0, C1, C2, …, Cn denote the binomial coefficients respectively in (1+x)2020, then
- C0−C12+C23−C34+…+C20202021=12021
- C0+C12+C23+C34+…+C20202021=22020−12021
- C0+C23+C45+…+C20202021=220202021
- C12+C34+…+C19992020=220202021
Q. Sum of the series 3C1−4C2+5C3−6C4+⋯ upto n terms is ( where Cr= nCr) is
- −1
- −2
- 1
- 2
Q. If C0, C1, C2, …, Cn denote the binomial coefficients in the expansion of (1+x)n, then value of 12⋅C1+22⋅C2+32⋅C3+…+n2 Cn is
- n(n+1)2n−1
- n(n+1)2n−2
- n(n−1)2n−1
- n(n−1)2n−2
Q. The value of (√2+1)6+(√2−1)6 is
Q. If C0, C1, C2, ⋯, Cn are the binomial coefficients and S=2×C1+23×C3+25×C5+⋯, then which of the following is/are correct?
- When n=50, then S=350−12
- When n=50, then S=350+12
- When n=101, then S=3101+12
- When n=101, then S=3101−12
Q. The number of positive terms in the sequence {Xn},
if Xn=907 (nPn)−n+4P3n+2Pn+2, n∈N is
if Xn=907 (nPn)−n+4P3n+2Pn+2, n∈N is
- 6
- 5
- 7
- 4
Q. If Cr denotes coefficient of xr in (1+x)99 then the value of C0−2C1+3C2−4C3+…100C99=
Q. If 2nC2+2nC4+2nC6+⋯+ 2nC2n=511, then absolue value of nC0−nC131+nC232+⋯+(−1)n ncn3n is
Q. If Cr represents 100Cr, then 5C0+8C1+11C2+… upto 101 terms is equal to
- (305)⋅299
- (305)⋅2100
- (310)⋅299
- (310)⋅2100
Q. Evaluate log32log43log54.....log1514log1615
Q. If 2nC2+2nC4+2nC6+⋯+ 2nC2n=511, then absolue value of nC0−nC131+nC232+⋯+(−1)n ncn3n is
Q. For n>0, the value of nC0−22⋅ nC1+32⋅ nC2−42 nC3⋯ upto (n+1) terms is kn(n+1)⋅2n, then k=
Q. 16×2n+1−4×2n16×2n+2−2×2n+2 equals
- 14
- −12
- −14
- 12
Q. If x2+1x2=23, evaluate x+1x
Q. The value of 15C20− 15C21+ 15C22−⋯− 15C215 is
- 15
- −15
- 0
- 51
Q. Value of C0+2C1+3C2+4C3+…+(n+1)Cn is
( where Cr= nCr)
( where Cr= nCr)
- (n+2)⋅2n
- n⋅2n−1
- n⋅2n
- (n+2)⋅2n−1