Tangent, Cotangent, Secant, Cosecant in Terms of Sine and Cosine
Trending Questions
Q. The value of cos−1(cos 13π6) is
- 13π6
- 7π6
- 5π6
- π6
Q. The value of sinπ5sin2π5sin3π5sin4π5 is
- 516
- 316
- 1116
- 1316
Q. The value of sin75∘+cos75∘ is
- √3√2
- 1√2
- √3−1√2
- √3+1√2
Q. If sin(x+y)sin(x−y)=a+ba−b, Show that tanxtany=ab.
Q. The expression tanA1−cotA+cotA1−tanA can be written as :
- sinA⋅cosA+1
- secA⋅cosecA+1
- tanA+cotA
- secA+cosecA
Q.
tanA1−cotA+cotA1−tanA=(secAcosecA+1)
Q. If √2sinA=sinB−sin3B and √2cosA=cosB+cos3B, then the possible value(s) of sin(A−B) is/are
- sin(A−B)=−12√2sin2B
- sin(A−B)=12√2sin2B
- sin(A−B)=13
- sin(A−B)=−13
Q. The value of cos(n+1)αcos(n−1)α+sin(n+1)αsin(n−1)α is
- cos2nα
- cos2α
- sin2nα
- sin2α
Q. If sinA=1213, cosB=−35, 0<A<π2, π<B<3π2, then the value of sin(A+B) is
- 3365
- −163
- −5665
- −6365
Q. If 1+sin2x1−sin2x=cot2(a+x)∀ x∈R−(nπ+π4), n∈N then the possible value of a is
- π4
- π2
- 3π4
- 3π2
Q. If sinAsinB−cosAcosB+1=0, then the value of 1−cotAtanB is
Q. If A+B+C=0, then value of ∣∣
∣∣1cosCcosBcosC1cosAcosBcosA1∣∣
∣∣ is
Q.
If and and then
Q. The value of cos15∘+sin15∘cos15∘−sin15∘ is
- 1
- 1√3
- 12
- √3
Q. The value of (cos75∘−cos15∘)2+(sin75∘−sin15∘)2 is
- 1
- 0
- 12
- −1
Q. The expression sinA(1+tanA)+cosA(1+cotA) is equivalent to
- sinA+cosA
- secA+tanA
- cosec A+cotA
- cosec A+secA
Q. The angle (in degree) between the hour hand and the minute hand in a circular clock at 03:25 hours is
- 67.5∘
- 75∘
- 47.5∘
- 52.5∘
Q. If sin(θ+α)=cos(θ+α), then which of the following is/are correct?
where θ, α∈(0, π2)−{π4}
where θ, α∈(0, π2)−{π4}
- tanα=1−tanθ1+tanθ
- tanα=1+tanθ1−tanθ
- tanθ=1+tanα1−tanα
- tanθ=1−tanα1+tanα
Q. If tanA1−cotA+cotA1−tanA=1+secA.cosecA.
Q. If sinA+sinB+sinC=0 and cosA+cosB+cosC=0, then the value of sin(A−B2) is
( where A, B, C∈[0, 2π] )
( where A, B, C∈[0, 2π] )
- 1
- 1√2
- 12
- √32
Q. The numerical value of (1−cosx)(1+cosx)(1+cot2x) is
- 0
- 1
- 2
- 3
Q. The angle between the minute hand and the hour hand of a clock when the time is 7:20 a.m. is
- 90∘
- 100∘
- 75∘
- 120∘
Q. If cos6A+sin6A=1−ksin22A, then the value of 4k is
Q. If cot2x3+tanx3=cosec kx3, then the value of k is
- 1
- 2
- 3
- −1
Q.
Prove: (cosecA−sinA)(secA−cosA)=1tanA+cotA
Q. Which of the following is/are correct regarding their fundamental period?
- 1|sinx|+|cosx|→π/2
- |sinx+cosx|→π
- |sinx+cosx|+|sinx−cosx|→3π/2
- |sinx|cosx+sinx|cosx|→2π
Q. Let A(5, 12), B(−13 cosθ, 13 sinθ) and C(13 sinθ, −13 cosθ) be vertices of ΔABC where θϵR. The locus of orthocenter of ΔABC is
- x – y + 7 = 0
- x – y - 7 = 0
- x + y - 7 = 0
- x + y + 7 = 0
Q. Which of the following is/are irrational numbers ?
- sin15∘
- cos15∘
- sin15∘cos15∘
- sec15∘+ cosec 15∘
Q. If xcosθ=ycos(θ+π3)=zsin(θ−π6), where y≠0, then which of the following is/are correct?
- y=z ∀θ∈R
- y+z=0 ∀θ∈R
- If x=0, then θ lies in the first and third quadrant.
- There is only one value of x satisfying the equation x+y+z=0
Q. The value of sin2A+sin2(A+B)−2sinAcosBsin(A+B) when B=45∘ is
- 1√2
- 12
- sin2A+1√2
- sin2A+12