Transformation of Roots: Linear Combination of Roots
Trending Questions
- x2+7x+12=0
- x2−7x+12=0
- x2+7x−12=0
- x2−7x−12=0
3x2+2x(k2+1)+k2−3k+2=0
has roots of opposite signs, lies in the interval
- (1, 2)
- (32, 2)
- (−∞, 0)
- (−∞, −1)
- x2+7x+18=0
- x2+3x+10=0
- x2+11x+18=0
- x2+3x=0
- 8
- x3+12x+56=0
- x3−12x−56=0
- x3+12x−56=0
- x3−12x+56=0
The number of quadratic equation which are unchanged by squaring their roots, is
None of these
- x29−14x3+5=0
- 9x2−42x+405=0
- x2−42x+405=0
- a(x+sk)2−b(x+sk)+c=0
- a(x−sk)2+b(x−sk)+c=0
- None of the above
- a(x+sk)2+b(x+sk)+c=0
- x2−5x+6=0
- x2+5x+6=0
- −x2−5x=0
- −x2−5x+6=0
- −x2+5x=0
- −x2+5x+6=0
If α, β are the roots of ax2+bx+c=0 and α+k, β+k are the roots of px2+qx+r=0.
Then b2−4acq2−4pr is equal to
1
(ap)2
(pa)2
0
- x2−42x+405=0
- x29−14x3+5=0
- 9x2−42x+405=0
- ax2+(4a−b)x+4a+2b+c=0
- ax2+(4a−b)x+4a−2b+c=0
- ax2+(b−4a)x+4a+2b+c=0
- ax2+(b−4a)x+4a−2b+c=0
If α, β are the roots of the quadratic equation x2+3x+6=0 , then find the equation whose roots are 1+α1−α, 1+β1−β
5y2−2y+5=0
5y2+5y+2=0
5y2+2y+5=0
2y2+5y+5=0
then graph of y−2=3(x−5)2 will be given by:
- x2−11x+30=0
- x2−11x−30=0
- x2+11x+30=0
- x2+11x−30=0
- x2+3x+10=0
- x2+3x=0
- x2+7x+18=0
- x2+11x+18=0
- 8
- x2−3x+2=0
- x2−3x−2=0
- x2+3x+2=0
- x2+3x−2=0
If and are the roots of the equation , then and are the roots of which one of the following equations:
- 23
- −32
- −23
- 32
- 8
- x2−42x+405=0
- x29−14x3+5=0
- 9x2−42x+405=0
- 4x2+3x+4=0
- x2+3x+8=0
- 4x2+3x+2=0
- x2+3x+4=0
Find the equation whose roots are \( 2x _1 + 3\) and \(2x _2 + 3, \) if \( x_1\) and \(x _2\) are the roots of \(x^{2} + 6x + 7 = 0\).
- a(x+k)2+b(x+k)+c=0
- None of the above
- a(x−k)2+b(x−k)+c=0
- a(x−k)2+b(x−k)−c=0
- x2+35x−2=0
- x2+19x+2=0
- x2+35x+2=0
- x2+29x+2=0
Find the equation whose roots are 2x1+3 and 2x2+3, if x1 and x2 are the roots of x2+6x+7=0.
(2x+3)2+6(2x+3)+7=0
(x−23)2+6(x−23)+7=0
(x−32)2+6(x−32)+7=0
(2(x−3))2+6[2(x−3)]+7=0
- a(x−k)2−b(x−k)+c=0
- a(x+k)2+b(x+k)+c=0
- a(x−k)2+b(x−k)−c=0
- a(x−k)2+b(x−k)+c=0