Trigonometric Ratios of Allied Angles
Trending Questions
If and , where and lie in the first and third quadrant respectively, then
- π4
- π2
- π
- 2π
(a) If sinA=1213 and sinB=45, where π2<A<π and 0<B<π2, find the following:
(i) sin(A+B)
(ii) cos(A+B)
(b) If sinA= 35, cosB=1213, where A and B both lie in second quadrant, find the value of sin(A+B).
Prove that: sin2π18+sin2π9+sin27π18+sin24π9=2
Prove that:
- π
- π2
- 2π
- 4π2
show that sin 19 ° + sin 41 ° + sin 83 °= sin 23 ° + Sin 37 °+ sin 79 °
Show that :
(i) sinAsin(B—C)+sinBsin(C—A)+sinCsin(A—B)=0
(ii) sin(B—C)cos(A—D)+sin(C—A)cos(B—D)+sin(A—B)cos(C—D)=0
- 164
- 1128
- 1512
- 1256
If tanA=34, cosB=941, where π<A<3π2 and 0<B<π2, find tan(A+B).
f(2x+3)+f(2x+7)=2 ∀ x∈R, then the fundamental period of f(x) is
- 2
- 4
- 8
- 12
- 2π3
- π
- π2
- π3
- (4, 5)
- [4, 5)
- (2, 3)
- [2, 3)
- cosec2π7+cot2π7
- tanπ14−cotπ14
- sin2π71−cos2π7
- 1+cosπ7+cos2π7sinπ7+sin2π7
Find the values of the following trigonometric ratios:
(i)sin5π3
(ii)sin3060∘
(iii)tan11π6
(iv)cos(−1125∘)
(V)tan315∘
(vi)sin510∘
(vii)cos570∘
(viii)sin(−330∘)
(ix)cosec(−1200∘)
(X)tan(−585∘)
(xi)cos855∘
(xii)sin1845∘
(xiii)cos1755∘
(xiv)sin4530∘
If (where, ) then the value of is:
Prove
Prove that:
(i)tan720∘−cos270∘−sin150∘cos120∘=14
(ii)sin780∘sin480∘+cos120∘sin150∘=12
(iii)sin780∘sin120∘+cos240∘sin390∘=12
(iv)sin600∘cos390∘+cos480∘sin150∘=−1
(v)tan250∘cot405∘+tan765∘cot675∘=0
The value of is
- 0
- 1
- −1
- ∞
- π3
- 4π3
- 2π
- 4π
- 114
- 514
- 314
- 0
- cos(3x∘)
- π60sin(3x∘)
- π60cos(3x∘)
- −π60sin(3x∘)
limx→0{x}tan{x} is
- 1
- 0
- −1
- It does not exist
- √32
- 0
- −1
- 12
Verify that tan30°=tan60°-tan30°/1+tan60°×tan30°