Equilibrium Constant and Standard Free Energy Change
Trending Questions
2N2O(g)⇌2N2(g)+O2(g)
ΔG0f(N2O)=104.2 kJ/mol, ΔG0f(N2)=0 and ΔG0f(O2)=0
- 6.3×1030
- 3.3×1036
- 3.3×10−36
- 6.3×10−30
- HI⇌12H2+12I2
- PCl5⇌PCl3+Cl2
- N2O4⇌2NO2
- all the above
3/2O2(g) → O3(g) at 298K, if Kp for this conversion is 2.47 × 10−29
(Use log(2.47) = 0.4)
- 163 KJ mol−1
- 2.4 X 102 KJ mol−1
- 1.63 KJ mol−1
- 2.38 X 106 KJ mol−1
- N2O4⇌2NO2△H=+59 kJ mol−1
- N2+3H2⇌2NH3△H=22k cal mol−1
- 2SO2+O2⇌2SO3△H=47k cal mol−1
- All of the above
- The equilibrium shifts to the left
- The equilibrium shifts to the right
- There is no change in the system
- None of the above
H3BO3(aq)+glycerin(aq)⇌(H3BO3−glycerin)(aq) is 0.90.
How many moles of glycerin should be added per litre of 0.10 M H3BO3 so that 80% of the H3BO3 is converted to the boric acid -glycerin complex?
- 4.44
- 4.52
- 3.6
- 0.08
- -RT
- -1
- \N
- +RT
For the reaction NH4HS(g)⇌NH3(g)+H2S(g) in a closed flask, the equilibrium pressure is P atm. The standard free energy of the reaction would be :
-RT In p
-RT(In p - In 2)
-2 RT In p
-2 RT (In p - In 2)
3/2O2(g) → O3(g) at 298K, if Kp for this conversion is 2.47 × 10−29
(Use log(2.47) = 0.4)
- 163 KJ mol−1
- 2.4 X 102 KJ mol−1
- 1.63 KJ mol−1
- 2.38 X 106 KJ mol−1
- Low pressure
- High pressure
- High temperature
- Catalyst
H2(g)+2Ag+(aq)⇌2Ag(s)+2H+(aq)
Given : pH2 = 0.5 bar;[Ag+]=10−5M;log 2 =0.3 log 2= 0.7,
[H+]=10−3M;ΔrG∘[Ag+(aq)]=77.1 kJ/mol
- −154.20 kJ/mol
- −178.90 kJ/mol
- −129.50 kJ/mol
- +154.21 kJ/mol
- Low pressure
- High pressure
- High temperature
- Catalyst
With the increase in temperature, the vapour density of the equilibrium mixture:
- Increases
- Decreases
- Remains the same
- Can not be predicted
- △ G∘=0
- △ G∘>0
- △ G∘<0
- △ G∘ = −RTln2
- 16 g/s
- 4 g/s
- 40 g/s
- 10 g/s
2NO(g)+O2(g)⇌2NO2(g)
The standard free energy of formation of NO(g) is 86.6 kJ/mol at 298 K. What is the standard free energy of formation of NO2(g) at 298 K? (Kp=1.6×1012)
- R(298)ln(1.6×1012) - 86600
- 86600 + R(298)ln(1.6×1012)
- 86600 - ln(1.6×1012)R(298)
- 0.5 [2 × 86600 - R(298)ln(1.6×1012)
The reaction N2O4 (g) ⇌ 2NO2 (g) is
carried out at 298 K and 20 bar. Five moles of each of N2O4and
NO2, are taken initially. Given: ΔfG∘
(N2O4) = 100 kJ mol−1 and ΔfG∘
(NO2) = 50 kJ mol−1.Choose the appropriate option: The values of
ΔG and K∘p at 298 K are:
ΔG = 0, K∘p = 10 bar; The reaction is in equilibrium
5.7058 kJmol−1, K∘p = 1 bar; The reaction goes in the reverse direction
-5.7058 kJmol−1, K∘p = 1 bar; The reaction goes in the forward direction
ΔG = 0, K∘p = 1 bar; The reaction is in equilibrium
A (g)+B (g)⇌C (g)+D (g)
ΔG∘=−1380 cal/mol
- 0.56
- 4.45
- 1.50
- 3.16
- 5.744
- -5.744
- -2.744
- 2.744
- 20.16
- 2.303
- 2.016
- 13.83
2SO2(g) + O2(g) ⇋ 2SO3(g) △ H = −45 kCal
- High pressure will be favorable for production of SO3 .
- High temperature will favor forward reaction.
- Decreasing SO3 concentration will reduce the rate of backward reaction.
- Doubling the volume of container while keeping temperature same, will shift the equilibrium in reverse direction.
A (g)+B (g)⇌C (g)+D (g)
ΔG∘=−1380 cal/mol
- 0.56
- 4.45
- 1.50
- 3.16
- N2O4(g)⇌2NO2(g)
- 2CO(g)+O2⇌2CO2(g)
- N2(g)+O2(g)⇌2NO(g)
- All of these
2SO2(g) + O2(g) ⇋ 2SO3(g) △ H = −45 kCal
- High pressure will be favorable for production of SO3 .
- High temperature will favor forward reaction.
- Decreasing SO3 concentration will reduce the rate of backward reaction.
- Doubling the volume of container while keeping temperature same, will shift the equilibrium in reverse direction.
- -RT
- -1
- \N
- +RT
N2O4(g)⇌2NO2(g) at 288 K is 47.9. The KC for this reaction at same temperature is ........(Nearest integer)
(R=0.083LbarK−1mol−1)
<!--td {border: 1px solid #cccccc;}br {mso-data-placement:same-cell;}-->
JEE MAIN 2021