Definite Integral as Limit of Sum
Trending Questions
Q.
limπ→∞∑nk=1 kn2+k2 is equals to [Roorkee 1999]
- 12 log 2
- log 2
- π4
- π2
Q. If I=16∫8(√x+√32x−256+√x−√32x−256) dx then (I16)2 is
Q. The value of limn→∞1n3(√n2+1+2√n2+22+⋯+n√n2+n2) is
- √2−15
- √2−13
- 2√2−15
- 2√2−13
Q.
=limn→∞[1n+1√n2+n+1√n2+2n+⋯+1√n2+(n−1)n] is equal to [RPET 2000]
- 2+2√2
- 2√2−2
- 2√2
- 2
Q. limn→∞ 113+n3+423+n3+⋯+12n is equal to
- 13 loge 3
- 13 loge 2
- 13 loge 13
None of these
Q. Let ∫(x2−1)dxx3√3x4+2x2−1=f(x)+c and λ=limx→∞f(x), then the absolute value of λ√3 is (where c is the constant of integration)
Q. The value of limn→∞π6n[sec2(π6n)+sec2(2⋅π6n)+⋯+sec2((n−1)π6n)+43] is
- √33
- √3
- 2
- 2√3
Q. limn→∞[1n+n(n+1)2+n(n+2)2+....+n(2n−1)2] is equal to:
- 1
- 13
- 12
- 14
Q. limn→∞∑nr=11nern is
- e
- e - 1
- 1 - e
- 1 + e
Q. The value of limn→∞1n2{sin2π4n+2sin22π4n+⋯+nsin24π4n} is
- 12−2π+4π2
- 14−1π+2π2
- 14+1π−2π2
- 12−2π
Q.
limπ→∞ 1n ∑2nr=1r√n2+r2 equals [IIT 1997 Re-exam]
- 1+√5
- −1+√5
- −1+√2
- 1+√2
Q.
limn→∞[1n+1n+1+1n+2+⋯+12n]= [Karnataka CET 1999]
- 0
- loge 4
loge 3
- loge 2
Q. limn→∞[1n+1+1n+2+⋯1n+n] is equal to
- 3 log 2
- log 2
- 2 log 2
- None of these