Domain and Range of Trigonometric Ratios
Trending Questions
Q. The maximum value of cosα1.cosα2...... cos αn,
under the restrictions 0≤α1α2, ....., αn≤π2 and cotα1.cotα2......cot αn=1 is
under the restrictions 0≤α1α2, ....., αn≤π2 and cotα1.cotα2......cot αn=1 is
- 12n2
- 12
- 12n
- 1
Q. If θ is an acute angle and sinθ=p−68−p, then p must satisfy
- 6≤p < 8
- 6≤p < 7
- 3≤p≤4
- 4≤p < 7
Q. If cosec2θ=4xy(x+y)2, then
- x=y
- x=−y
- x=1x
- x=1y
Q. If A=sin8 θ+cos14 θ, then for all real values of θ
- A≥1
- 0 < A≤1
- 1 < 2A≤3
- None of these
Q. The number of ordered solution pairs (x, y) in [0, 2π] for the system of the equations x+y=2π3 and cosx+cosy=32 is
Q. The maximum value of cosα1.cosα2...... cos αn,
under the restrictions 0≤α1α2, ....., αn≤π2 and cotα1.cotα2......cot αn=1 is
under the restrictions 0≤α1α2, ....., αn≤π2 and cotα1.cotα2......cot αn=1 is
- 12n2
- 12
- 12n
- 1
Q. If sin x+cosec x=2, then sinn x+cosecnx is equal to
- 2
- 2n
- 2n−1
- 2n−2
Q. List IList II (A)If the quadratic equation x2−2αx+2α=0 has two real(P)0and distinct roots x1 and x2 such that |x1–x2|≤2√3, then α can be(B)If y=x2+4xx2+4x+6, then the integers in range of y is/are(Q)1(C)If (2−n)x2−n<8x+4 ∀ x∈R, then n4 can be(R)2(D)If the equation cos2x+2acosx+6a=17 has a solution, (S)3then a can be(T)−1
Which of the following is the only CORRECT combination?
Which of the following is the only CORRECT combination?
- (C)→(P), (Q)
- (C)→(Q), (R)
- (D)→(Q), (T)
- (D)→(R), (S)
Q.
If ∣∣cos θ+{sin θ+√sin2 θ+sin2 α}∣∣≤k, then the value of k is
√1+cos2 α
√1+sin2 α
√2+sin2 α
√2+cos2 α
Q. If θ is an acute angle and sinθ=p−68−p, then p must satisfy
- 6≤p < 8
- 6≤p < 7
- 3≤p≤4
- 4≤p < 7
Q. The quadratic equation (cosp−1)x2+(cosp)x+sinp=0
(where x∈R) has real roots if p lies in
(where x∈R) has real roots if p lies in
- (0, 2π)
- (−π, 0)
- (−π2, π2)
- (0, π]
Q.
If esinx−e−sinx=a has alteast one real solution, then
- |a|∈(e2−1e, ∞)
- |a|∈[0, e2−1e]
- |a|∈(e, ∞)
- |a|∈[0, e]
Q. The number of solutions of the equations y=13[sinx+[sinx+[sinx]]] and [y+[y]]=2cosx, where [.] denotes the greatest integer function is
- 0
- 1
- 2
- infinite
Q. If A=sin8 θ+cos14 θ, then for all real values of θ
- A≥1
- 0 < A≤1
- 1 < 2A≤3
- None of these
Q. Let f(x)=log(log1/3(log7(sinx+a))) be defined for every value of x, then the possible value of a is
- 3
- 4
- 5
- 6
Q. The quadratic equation (cosp−1)x2+(cosp)x+sinp=0
(where x∈R) has real roots if p lies in
(where x∈R) has real roots if p lies in
- (0, 2π)
- (−π, 0)
- (−π2, π2)
- (0, π]
Q.
For 0< ϕ < π2, if x=∑∞n=0cos2nϕ, y=∑∞n=0sin2nϕ, z=∑∞n=0cos2n ϕ, then
xyz = xz + y
xyz = xy + z
xyz = x + y + z
xyz = yz + x
Q. List IList II (A)If the quadratic equation x2−2αx+2α=0 has two real(P)0and distinct roots x1 and x2 such that |x1–x2|≤2√3, then α can be(B)If y=x2+4xx2+4x+6, then the integers in range of y is/are(Q)1(C)If (2−n)x2−n<8x+4 ∀ x∈R, then n4 can be(R)2(D)If the equation cos2x+2acosx+6a=17 has a solution, (S)3then a can be(T)−1
Which of the following is the only CORRECT combination?
Which of the following is the only CORRECT combination?
- (A)→(R), (S)
- (A)→(S), (T)
- (B)→(P), (Q)
- (B)→(Q), (T)
Q.
If f(x)=cos2x+sec2x, then
f(x) <1
f(x) = 1
1 < f(x) < 2
f(x) ≥ 2
Q. Let f(x)=log(log1/3(log7(sinx+a))) be defined for every real values of x, then the range of a
- (2, 6)
- [2, 6]
- (−∞, 2)∪[6, ∞)
- (−∞, 2]∪(6, ∞)