Properties of Determinants
Trending Questions
Q. If ω is the cube root of unity, then ∣∣
∣
∣∣1ωω2ωω21ω21ω∣∣
∣
∣∣=
- 1
- 0
- ω
- ω2
Q. In a triangle ABC, the value of the determinant ∣∣
∣
∣
∣∣sinA2sinB2sinc2sin(A+B+C)sinB2cosA2cos(A+B+C2)tan(A+B+C)sinC2∣∣
∣
∣
∣∣ is less than or equal to
- 12
- 14
- 18
- None of these
Q.
If Z=∣∣
∣∣25−i7+i5+i23−i7−i3+i7∣∣
∣∣ and arg (z) = θ then θ =
Q. The determinant ∣∣
∣∣111123136∣∣
∣∣ is not equal to
- ∣∣ ∣∣211223236∣∣ ∣∣
- ∣∣ ∣∣211323436∣∣ ∣∣
- ∣∣ ∣∣121153196∣∣ ∣∣
- ∣∣ ∣∣3116231036∣∣ ∣∣
Q. If ∣∣
∣∣x+1352x+2523x+4∣∣
∣∣=0, then x =
- 1, 9
- -1, -9
- 1, -9
- -1, 9
Q. If a+b+c=0, then the solution of the equation ∣∣
∣∣a−xcbcb−xabac−x∣∣
∣∣=0 is
- 0
- ±32(a2+b2+c2)
- 0, ±√32(a2+b2+c2)
- 0, ±√(a2+b2+c2)
Q. ∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣=
- (a+b+c)2
- (a+b+c)3
- (a+b+c)(ab+bc+ca)
- None of these
Q. The value of the determinant ∣∣
∣∣1ab+c1bc+a1ca+b∣∣
∣∣ is
- a+b+c
- (a+b+c)2
- 0
- 1+a+b+c
Q.
Circle
Ellipse
Parabola
Straight line
Q.
\( \text { If a point }(x, y) \text { moves on a curve and satisfies the equation }\left|\begin{array}{ccc} a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+a y & 0 \end{array}\right|=0 \) Then,
\( \text { If a point }(x, y) \text { moves on a curve and satisfies the equation }\left|\begin{array}{ccc} a & b & a x+b y \\ b & c & b x+c y \\ a x+b y & b x+a y & 0 \end{array}\right|=0 \) Then,