Property 1
Trending Questions
Q. ∫10dx[ax+b(1−x)]2=
- ab
- ba
- ab
- 1ab
Q. The value of the integral I = ∫10x(1−x)n dx is
- 1n+1
- 1n+2
- 1n+1−1n+2
- 1n+1+1n+2
Q.
Which inverse trigonometric function has a range of ?
Q. ∫π40 sin x+cos x9+16 sin 2xdx=
- 120log 3
- log 3
- 120log 5
- None of these
Q. ∫π20dxa2cos2x+b2sin2x where (a, b >0) is equal to-
- π2ab
- 2πab
- π2a
- π2b
Q. ∫10sin−1(2x1+x2)dx=
- π2−2 log√2
- π2+2 log√2
- π4−log√2
- π4+log√2
Q. ∫a0x4dx(a2+x2)4=
- 116 a3(π4−13)
- 116 a3(π4+13)
- 116a3(π4−13)
- 116a3(π4+13)
Q. If I=∫10 cos(2 Cot−1√1−x1+x)dx then
- I>12
- I=−12
- I<12
- I=12
Q. ∫log50ex√ex−1ex−3dx=
- 3+2π
- 4−π
- 2+π
- none
Q. The value of the integral ∫30 dx√x+1+√5x+1dx is
- 1115
- 1415
- 25
- 1+12log(35)
Q. ∫π20cos x(1+sin x)(2+sin x)dx=
- log43
- log13
- log34
- None of these
Q. If I=∫baf(g(x)).g′(x)dx then on substituting g(x) = t where the equation g(x) = t is continuous in the interval [a, b] , I will be equal to -
- I=∫baf(t).dt
- I=∫g(b)g(a)f(t).dt
- I=∫g(a)g(b)f(t).dt
- None of these
Q. If ∫k0dx2+8x2=π16, then k=
- 1
- 12
- 14
- None of these
Q. Let f be a differentiable function from R to R such that |f(x)−f(y)|≤2|x−y|3/2, for all x, y∈R. If f(0)=1, then 1∫0f2(x)dx is equal to :
- 0
- 1
- 12
- 2
Q. Let ddxF(x)=(esin xx), x>0.If ∫413xesin x3dx=F(k)−F(1), then one of the possible values of k is
- 15
- 16
- 63
- 64
Q. The value of integral ∫2π1πsin(1x)x2dx=
- 2
- -1
- \N
- 1
Q. ∫∞0 log(1+x2)1+x2dx=
π log 12
- π log 2
- 2π log 12
- 2π log 2
Q. ∫10x1+√xdx=
- 2[56+log 2]
- 2[56−log 2]
- [56−log 2]
- [56+log 2]
Q. ∫x20√cos θsin3 θ dθ=
- 2021
- 821
- −2021
- −821
Q. ∫20√2+x2−xdx=
- π+2
- π+32
- π+1
- None of these
Q. ∫10 tan−1x dx=
- π4−12log 2
- π−12log 2
- π4−log 2
- π−log 2
Q. The value of the integral I = ∫10x(1−x)n dx is
- 1n+1
- 1n+2
- 1n+1−1n+2
- 1n+1+1n+2
Q. Let F(x) = f(x) + f(1x), f(x)=∫x1logt1+tdt. Then F(e) equals
- 12
- \N
- 1
- 2
Q.
∫π2π3 √1+cos x(1−cos x)52dx= [AI CBSE 1980]
- 52
32
- 12
25
Q. ∫10 sin−1(2x1+x2)dx= [Karnataka CET 1999]
- π2−2 log√2
- π2+2 log√2
- π4−log√2
- π4+log√2
Q. ∫ba√[x−ab−x]dx=
- 2π(b−a)3
- π(b+a)2
- π(b−a)2
- π(b−a)3
Q. ∫10dx[ax+b(1−x)]2=
- ab
- ba
- ab
- 1ab
Q. ∫π20 cos x1+sin xdx=
log 2
log e
12 log 3
0
Q.
∫π4−π4ex.sec2xdxe2x−1is equal to
0
2
e
2e
Q. ∫π20 dx2+cos x=
- 1√3tan−1(1√3)
- √3 tan−1(√3)
- 2√3tan−1(1√3)
- 2√3 tan−1(√3)