Property 4
Trending Questions
Q.
What is the integration of ?
Q. For a function f(x)≥0∀xϵ(a, b);a<b∣∣∫baf(x)dx∣∣≤∫ba|f(x)|dx.
- True
- False
Q. If I=∫10sin x√xdx and J=∫10cosx√xdx, then, which one of the following is true?
- I>23 and J>2
- I<23 and J<2
- I<23 and J>2
- I>23 and J<2
Q. Statement-I: The value of the integral π/3∫π/6dx1+√tanx is equal to π6.
Statement-II: b∫af(x)d(x)=b∫af(a+b−x)d(x).
Statement-II: b∫af(x)d(x)=b∫af(a+b−x)d(x).
- Statement-I is true; Statement-II is true; Statement-II is a correct explanation for Statement-I.
- Statement-I is true; Statement-II is true; Statement-II is not a correct explanation for Statement-I.
- Statement-I is true; Statement-II is false.
- Statement-I is false; Statement-II is true.
Q. If f(x)=ex1+ex, I1=∫f(a)f(−a)xg{x(1−x)}dx and I2=∫f(a)f(−a)g{x(1−x)}dx, then the value of I2I1 is
- 2
- 1
- -1
- -3
Q. For a function f(x)≥0∀xϵ(a, b);a<b∣∣∫baf(x)dx∣∣=5 then find ∫ba|f(x)|dx ?
- 3
- 4
- 5
- 6
Q. The value of 2π∫0[sin2x(1+cos3x)]dx, where [t] denotes the greatest integer function, is :
- 2π
- −2π
- π
- −π
Q. For a function f(x)≥0∀xϵ(a, b);a<b∣∣∫baf(x)dx∣∣=5 then find ∫ba|f(x)|dx ?
- 3
- 4
- 5
- 6
Q. Let I1=∫π40x2008(tan x)2008dx, I2=∫π40x2009(tan x)2009dx and I3=∫π40x2010(tan x)2010dx
- I2<I3<I1
- I1<I2<I3
- I3<I1<I2
- I3<I2<I1
Q. ∫π/20log(sinx) dx=
- −(π2)log2
- πlog12
- −πlog12
- 12log2
Q.
Let g(x)=∫x0f(t) dt where 12≤f(t)≤1, tϵ[0, 1] and 0≤f(t)≤12 for tϵ(1, 2), then [IIT Screening 2000]
- −32≤g(2)<12
- 0≤g(2)<2
- 32<g(2)≤52
- 2<g(2)<4
Q. The value of ∫82 √10−x√x+√10−x dx is
Q. The value of the integral
π/2∫−π/2sin4x(1+log(2+sinx2−sinx)) dx is :
π/2∫−π/2sin4x(1+log(2+sinx2−sinx)) dx is :
- 0
- 34
- 38π
- 316π
Q. The value of 2π∫0xsin8xsin8x+cos8xdx is equal to :
- 2π
- 4π
- 2π2
- π2
Q. Let f:(0, 1]→R be a continuous function such that ∫π0f(sin x) dx=2018, then ∫π0x f(sin x) dx is equal to
- 1009π
- 1008π
- 2017π
- 2016π
Q. If f(x)=∫(cotx2−tanx2)dx, where f(π2)=0, then which of the following statements is (are) CORRECT ?
(Note : sgn(y) denotes the signum function of y.)
(Note : sgn(y) denotes the signum function of y.)
- π∫0f(x) dx=−2πln2
- π∫0f(x) dx=−πln2
- sgn(f(2π3))=−1
- sgn(f(2π3))=1
Q. The value of 2π∫0xsin8xsin8x+cos8xdx is equal to :
- 2π
- 4π
- 2π2
- π2
Q. If the value of π/2∫−π/2x21+tanx+√1+tan2xdx is π3a. Then a=
Q. If I1=∫102x2 dx, I2=∫102x3dx, I3=∫212x2dx and I4=∫212x3 dx then
- I3>I4
- I3=I4
- I1>I2
- I2>I1
Q. Let f(x) be a continuous function of x defined on [0, a] such that f(a - x) = f(x). Then, ∫a0x f(x) dx is equal to
- a2∫a0f(x) dx
- a∫a0f(x) dx
- a2∫a0f(a−x) dx
- a∫a0f(a−x) dx
Q. ∫ba sin2x dx lies in which of the following interval if a, b ϵ R and b > a ?
- [a, b]
- [0, a]
- [0, b ]
- [0, (b - a )]
Q.
Let g(x)=∫x0f(t) dt where 12≤f(t)≤1, tϵ[0, 1] and 0≤f(t)≤12 for tϵ(1, 2), then [IIT Screening 2000]
- −32≤g(2)<12
- 0≤g(2)<2
- 32<g(2)≤52
- 2<g(2)<4
Q. ∫π/20 xsinxcosxcos4x+sin4xdx=
- \N
- π8
- π28
- π216
Q. If 3π/4∫−π/4eπ/4 dx(ex+eπ/4)(sinx+cosx)=λπ/2∫−π/2secx dx, then λ is equal to
- 12
- 1√2
- 12√2
- 2√2
Q.
If I is the greatest of the definite integrals
I1=∫10e−xcos2x dx, I2=∫10e−x2cos2 x dx
I3=∫10e−x2dx, I4=∫10e−x22dx, then
I=I1
I=I2
I=I3
I=I4
Q. If I1=∫102x2 dx, I2=∫102x3dx, I3=∫212x2dx and I4=∫212x3 dx then
- I3>I4
- I3=I4
- I1>I2
- I2>I1
Q. If f and g are continuous on [0, a] and satisfy f(x) = f(a - x) and g(x) + g(x - a) = 2, then ∫a0f(x) g(x) dx is equal to
- ∫a0f(x) dx
- ∫a0f(a−x) dx
- ∫a0f(a−x) g(a−x) dx
- ∫a0g(x) dx