A(1,−1,−3),B(2,1,−2),C(−5,2,−6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is :
A
3√102
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3√104
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3√105
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3√107
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B3√104 Given: A(1,−1,−3),B(2,1,−2),C(−5,2,−6) −−→AB=→B−→A=(2^i+^j−2^k)−(^i−^j−3^k)=^i+2^j+^k −−→AC=→C−→A=(−5^i+2^j−6^k)−(^i−^j−3^k)=−6^i+3^j−3^k |−−→AB|=√1+4+1=√6 |−−→AC|=√36+9+9=√54=3√6
Suppose the bisector of angle A meets −−→BC at D.
Then −−→AD divides −−→BC in the ratio −−→AB:−−→AC ∴P.V.ofD=|−−→AC|(2^i+^j−2^k)+|−−→AB|(−5^i+2^j−6^k)|−−→AB|+|−−→AC| ∴P.V.ofD=3√6(2^i+^j−2^k)+√6(−5^i+2^j−6^k)√6+3√6 ∴P.V.ofD=3(2^i+^j−2^k)+(−5^i+2^j−6^k)4 ∴P.V.ofD=^i+5^j−12^k4
Hence −−→AD=−−→OD−−−→OA=^i+5^j−12^k4−(^i−^j−3^k) −−→AD=14(−3^i+9^j)
Length of Angle Bisector will be: 14√9+81+0=√904=3√104