wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A(1,1,3),B(2,1,2), C(5,2,6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is :

A
3102
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3104
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3105
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3107
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 3104
Given: A(1,1,3),B(2,1,2), C(5,2,6)
AB=BA=(2^i+^j2^k)(^i^j3^k)=^i+2^j+^k
AC=CA=(5^i+2^j6^k)(^i^j3^k)=6^i+3^j3^k
|AB|=1+4+1=6
|AC|=36+9+9=54=36
Suppose the bisector of angle A meets BC at D.
Then AD divides BC in the ratio AB:AC
P.V. of D=|AC|(2^i+^j2^k)+|AB|(5^i+2^j6^k)|AB|+|AC|
P.V. of D=36(2^i+^j2^k)+6(5^i+2^j6^k)6+36
P.V. of D=3(2^i+^j2^k)+(5^i+2^j6^k)4
P.V. of D=^i+5^j12^k4
Hence AD=ODOA=^i+5^j12^k4(^i^j3^k)
AD=14(3^i+9^j)
Length of Angle Bisector will be: 149+81+0=904=3104


flag
Suggest Corrections
thumbs-up
46
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon