AB=√(5+1)2+(0−2)2+(−6+3)2=√49=7AC=√(0+1)2+(4−2)2+(1+3)2=√9=3by geometry , the bisector of∠BAC
will divide the side BC in the ration AB:AC i.e.,in the ratio 7:3 internally .Let the bisector of ∠BAC , meets the side BC at point D.
Therefore,D divides BC in the ratio 7:3
coordinates of D are
(7×0+3×57+3,7×4+3×07+3,7×(−1)+3×(−6)7+3)(32,145,−53)
Therefore, direction ratio of the bisector AD are
32−(−1),145−2,−52+3i.e.52,45,12
Hence , direction cosines of the bisector AD are
52√(52)2+(45)2+(12)245√(52)2+(45)2+(12)212√(52)2+(45)2+(12)225√714,8√714,5√714