a+(a+d)+(a+2d)+....+(a+(n−1)d)=n2[2a+(n−1)d]
Let P(n) : a+(a+d)+(a+2d)+......+(a+(n−1)d)=n2[2a+(n−1)d]
For n = 1
a=12[2a+(1−1)d]
a=a
⇒ P(n) is true for n = 1
Let P(n) is true for n = k, so
a+(a+d)+(a+2d)+...+(a+(k−1)d)=k2[2a+(k−1)d] .......(1)
We have to show that,
a+(a+d)+(a+2d)+......+(a+(k−1)d)+(a+(k)d)=(k+1)2[2a+kd]
Now,
{a+(a+d)+(a+2d)+....+(a+(k−1)d)}+(a+kd)
=k2[2a+(k−1)d]+(a+kd)
[Using equation (1)]
=2ka+k(k−1)d+2(a+kd)2
=2ka+k2d−kd+2a+2kd2
=2ka+2a+k2d+kd2
=2a(k+1)+d(k2+k)2
=(k+1)2[2a+kd]
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all n ϵ N by PMI.