wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a+(a+d)+(a+2d)+....+(a+(n1)d)=n2[2a+(n1)d]

Open in App
Solution

Let P(n) : a+(a+d)+(a+2d)+......+(a+(n1)d)=n2[2a+(n1)d]

For n = 1

a=12[2a+(11)d]

a=a

P(n) is true for n = 1

Let P(n) is true for n = k, so

a+(a+d)+(a+2d)+...+(a+(k1)d)=k2[2a+(k1)d] .......(1)

We have to show that,

a+(a+d)+(a+2d)+......+(a+(k1)d)+(a+(k)d)=(k+1)2[2a+kd]

Now,

{a+(a+d)+(a+2d)+....+(a+(k1)d)}+(a+kd)

=k2[2a+(k1)d]+(a+kd)

[Using equation (1)]

=2ka+k(k1)d+2(a+kd)2

=2ka+k2dkd+2a+2kd2

=2ka+2a+k2d+kd2

=2a(k+1)+d(k2+k)2

=(k+1)2[2a+kd]

P(n) is true for n = k + 1

P(n) is true for all n ϵ N by PMI.


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon