wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a + (a + d) + (a + 2d) + ... (a + (n − 1) d) = n22a+(n-1)d

Open in App
Solution

Let P(n) be the given statement.
Now,
P(n): a+(a+d)+(a+2d)+...+(a+(n-1)d)=n22a+(n-1)dStep1:P(1)= a= 12(2a+(1-1)d)Hence, P(1) is true.Step 2:Suppose P(m) is true.Then,a+(a+d)+...+(a+(m-1)d)=m22a+(m-1)dWe have to show that P(m+1) is true whenever P(m) is true.That is,a+(a+d)+...+(a+md)=(m+1)22a+mdWe know that P(m) is true.Thus, we have:a+(a+d)+...+(a+(m-1)d)=m22a+(m-1)da+(a+d)+...+(a+(m-1)d)+(a+md)=m22a+(m-1)d+(a+md) Adding (a+md) to both sidesP(m+1)=122am+m2d-md+2a+2mdP(m+1)=122a(m+1)+md(m+1) =12(m+1)(2a+md)Thus, P(m+1) is true.By the principle of mathematical induction, P(n) is true for all nN.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon