a+ar+ar2+......+arn−1=a(rn−1r−1) r≠1.
Let P(n) : a+ar+ar2+....+arn−1=a(rn−1r−1), r ≠ 1.
For n = 1
a = a (r1−1r−1)
a = a
⇒ p(n) is true for n = 1
Let p(n) is true for n = k, so
a+ar+ar2+.....+ark−1=a(rk−1r−1),r≠1 ...........(1)
We have to show that,
a+ar+ar2+.....+ark−1+ark=a(rk+1−1r−1)
Now,
{a+ar+ar2+....+ark−1}+ark=a(rk−1r−1)+ark
[using equation (i)]
=a(rk−1+rk(r−1)r−1)
=a(rk−1+rk+1−rkr−1)
=a(rk+1−1)r+1
⇒ P(n) is true for n = k + 1
⇒ is true for all n ϵ N by PMI