wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A+B+C=1800. Find the value of cos2A+cos2B+cos2C

A
1+2cosAcosBcosC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1+2sinAsinBsinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12cosAcosBcosC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12sinAsinBsinC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 12cosAcosBcosC
Using cos2x=2cos2x1cos2x=cos2x+12

I=cos2A+cos2B+cos2C
=12(cos2A+cos2B+cos2C+3)

Now, from A+B+C=1802C=3602(A+B)

We get

I=12(2cos(A+B)cos(AB)+cos(3602(A+B))+3)=12(2cos(A+B)cos(AB)+cos(2(A+B))+3)=12(2cos(A+B)cos(AB)+2cos2(A+B)1+3)=12[2cos(180C)(cos(A+B)+cos(AB))+2]=12[2cosC(2cosAcosB)+2]
=12cosAcosBcosC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon