Suppose the force F be applied at an angle
θ wih the
horizontal and vertical directions, we have
R + F sinθ = mg _ _ _ _( 1 )
and nR = f cos θ _ _ _ _ ( 2 )
form equation 1 and 2
or F = nmgcosθ+nsinθ _ _ _ ( 3 )
For force to be minimum, the denominator should be maximom
i. e. θ must satisfy the condition.
ddθ(cosθ+nsinθ)=0
or -sinθ+ncosθ=0
or tanθ=n_ _ _ _ _ ( 4 )
Therefore, F will be minimum if θ=tan−1(n)
Now, using ( 4 )
sinθ=tanθ(1+tan2θ)12
= n(1+n2)12
so, cosθ=√1−sin2θ
= 1(1+n2)12
Substituting these values in ( 3 ),
Fmin=nmg1(1+n2)12+n2(1+n2)12
= nmg(1+n2)12