Let the point of tangency be (x1,x213)
Slope of the tangent, mt=y′=2x13
∴ Slope of the normal, mn=−32x1
⇒x213+3x1−15=−32x1
⇒2x1(x21+9)=9(15−x1)
⇒2x31+18x1=135−9x1
⇒2x31+27x1−135=0
⇒(x1−3)(2x21+6x1+45)=0
⇒x1=3 or 2x21+6x1+45=0
2x21+6x1+45=0 (D<0)
So, (x1,y1)=(3,3)
The radius of the circle will be
r=√(15−3)2+(−3−3)2⇒r=6√5=a√5
Hence, the value of a is 6