wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a cos B cos C+cos A=b cos C cos A+cos B=c cos A cos B+cos C

Open in App
Solution

Suppose asinA=bsinB=csinC=k

Consider:
acosBcosC+cosA=ksinAcosBcosC+cosA =ksinAcosBcosC+cosAsinA=k12cosCsinA+B+sinA-B+sinAcosA=k12sinA+BcosC+sinA-BcosC+sinAcosA=k1212sinA+B+C+sinA+B-C+sinA-B+C+sinA-B-C+sinAcosA=k14sinπ+sinπ-2C+sinπ-2B-sinπ-2A+sin2A2 A+B+C=π=k4sin2C+sin2B+sin2A ....1and bcosAcosC+cosB=ksinBcosAcosC+sinBcosB=k12cosAsinB+C+sinB-C+sin2B2=k12sinB+CcosA+sinB-CcosA+sin2B2=k14sinB+C+A+sinB+C-A+sinB-C+A+sinB-C-A+sin2B2=k4sinπ+sinπ-2A+sinπ-2C-sinπ-2B+sin2B2 A+B+C=π=k4sin2A+sin2C+sin2B ...2Similarly,ccosAcosB+cosC=k4sin2A+sin2B+sin2C ...3


From (1), (2) and (3), we get:

a cos B cos C+cos A=b cos C cos A+cos B=c cos A cos B+cos C

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon