wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

acotA+bcotB+ccotC=2(R+r)

Open in App
Solution

LHS: acotA+bcotB+ccotC

=2RsinAcosAsinA+2RsinBcosBsinB+2RsinCcosCsinC ------Since, a=2RsinA

=2R(cosA+cosB+cosC)---(i)

Consider, cosA+cosB+cosC
=(cosA+cosB)+cosC

=2cos(A+B2).cos(AB2)+12sin2(C2)

=2cos(180C2).cos(AB2)2sin2(C2)+1

=2sin(C2).cos(AB2)2sin2(C2)+1

=2sin(C2)[cos(AB2)sin(C2)]+1

=2sin(C2)[cos(AB2)sin(180(A+B)2)]+1

=2sin(C2)[cos(AB2)cos(A+B2)]+1

=2sin(C2).2sin(A2)sin(B2)+1

=4Rsin(C2).sin(A2)sin(B2)R+1

=rR+1

Substitute in (i)
=2R(rR+1)

=2R(r+RR)

=2(r+R) :RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon