LHS: acotA+bcotB+ccotC
=2RsinAcosAsinA+2RsinBcosBsinB+2RsinCcosCsinC ------Since, a=2RsinA
=2R(cosA+cosB+cosC)---(i)
Consider, cosA+cosB+cosC
=(cosA+cosB)+cosC
=2cos(A+B2).cos(A−B2)+1−2sin2(C2)
=2cos(180−C2).cos(A−B2)−2sin2(C2)+1
=2sin(C2).cos(A−B2)−2sin2(C2)+1
=2sin(C2)[cos(A−B2)−sin(C2)]+1
=2sin(C2)[cos(A−B2)−sin(180−(A+B)2)]+1
=2sin(C2)[cos(A−B2)−cos(A+B2)]+1
=2sin(C2).2sin(A2)sin(B2)+1
=4Rsin(C2).sin(A2)sin(B2)R+1
=rR+1
Substitute in (i)
=2R(rR+1)
=2R(r+RR)
=2(r+R) :RHS