We have, S={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),......(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}
Thus, n(S)=36
Let A be the event of getting 5 in the first throw.
⇒A={(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)}
⇒n(A)=6
⇒P(A)=n(A)n(S)=626
Let B be the event of getting 5 in the second throw
⇒B={(1,5),(2,5),(3,5),(4,5),(5,5),(5,6)}
⇒n(B)=6
⇒P(B)=n(B)n(S)=636
Thus, A∩B={(5,5)}
and n(A∩B)=1
Therefore, P(A∩B)=n(A∩B)n(S)=136
The required probability =P(A∪B)=
=P(A)+P(B)−P(P(A∩B)=636+636−136=1136