wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(a) Differentiate y=cos1(1x21+x2) with respect to x,0<x<1,
(b) Differentiate xx2sinx with respect to x

Open in App
Solution

(a)y=cos1(1x21+x2)

dydx=11(1x21+x2)2ddx(1x21+x2)

=(1+x2)(1+x2)2(1x2)2[(1+x2)(2x)(1x2)(2x)(1+x2)2]

=11+x4+2x21x4+2x2[2x(1x21+x2)1+x2]

=4x22x(1+x2)

=2x1+x2

(b)y=xx2sinx

Let u=xx and v=2sinx

dydx=dudxdvdx

We have u=xx and v=2sinx

logu=logxx and logv=log2sinx

logu=xlogx and logv=sinxlog2=log2sinx

1ududx=x×1x+logx and 1vdvdx=log2cosx

1ududx=1+logx and 1vdvdx=log2cosx

dudx=u(1+logx) and dvdx=v(log2cosx)

dudx=xx(1+logx) and dvdx=2sinx(log2cosx) where u=xx and v=2sinx

dydx=dudxdvdx

dydx=xx(1+logx)2sinx(log2cosx)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon