wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a=1+x33!+x66!+...,

b=x+x44!+x77!+...,

c=x22!+x55!+x88!+....

If a3+b3+c3zabc=1. Find the value of z

Open in App
Solution

Since a=1+x33!+x66!+...

b=x+x44!+x77!+...

c=x22!+x55!+x88!+...

a+b+c=1+x+x22!+x44!+x55+...

a+b+c=ex ...(1)

And
a+bω+cω2=(1+x33!+x66!+...)+ω(x+x44!+x77!+...)+ω2(x22!+x55!+x88!+...)


=(1+ω3x33!+ω6x66!+...)+(ωx+ω4x44!+ω7x77!+...)+(ω2x22!+ω5x55!+ω8x88!+...)

Where ω is the cube root of unity.

a+bω+cω2=1+ωx+ω2x22!+ω3x33!+ω4x44!+...

a+bω+cω2=eωx ...(2)

Similarly

And
a+bω2+cω=eω2x
or replacing ω by ω2 in (2)

a+bω2+cω=eω2x ...(3)

Multiplying (1), (2)and (3),

Then (a+b+c)(a+bω+cω2)(a+bω2+cω)=ex(1+ω+ω2)

a3+b3+c33abc=e0 (1+ω+ω2=0)

Hence,a3+b3+c33abc=1
z=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon