a=1+x33!+x66!+...,
b=x+x44!+x77!+...,
c=x22!+x55!+x88!+....
If a3+b3+c3−zabc=1. Find the value of z
Since a=1+x33!+x66!+...
b=x+x44!+x77!+...
c=x22!+x55!+x88!+...
a+b+c=1+x+x22!+x44!+x55+...
a+b+c=ex ...(1)
And
a+bω+cω2=(1+x33!+x66!+...)+ω(x+x44!+x77!+...)+ω2(x22!+x55!+x88!+...)
=(1+ω3x33!+ω6x66!+...)+(ωx+ω4x44!+ω7x77!+...)+(ω2x22!+ω5x55!+ω8x88!+...)
Where ω is the cube root of unity.
∴a+bω+cω2=1+ωx+ω2x22!+ω3x33!+ω4x44!+...
∴a+bω+cω2=eωx ...(2)
Similarly
And
a+bω2+cω=eω2x
or replacing ω by ω2 in (2)
a+bω2+cω=eω2x ...(3)
Multiplying (1), (2)and (3),
Then (a+b+c)(a+bω+cω2)(a+bω2+cω)=ex(1+ω+ω2)
a3+b3+c3−3abc=e0 ∵(1+ω+ω2=0)
Hence,a3+b3+c3−3abc=1