The correct option is A Both A and R are true and R is the correct explanation of A
∫dxa+bcosx=1√b2−a2log∣∣
∣∣√b+a+√b−atan(x/2)√b+a−√b−atan(x/2)∣∣
∣∣+c
∫dxa+bcosx
=∫dxa+b(1−tan2x/21+tan2x/2)
=∫sec2x/2dx(a+b)+(a−b)tan2x/2
Substituting tan(x/2)=t
12sec2(x/2)dx=dt
=∫2dt(a+b)−(b−a)t2
=∫2dt(b−a)[(√b+ab−a)2−t2]
=1√b2−a2log∣∣
∣∣√b+a+√b−atan(x/2)√b+a−√b−atan(x/2)∣∣
∣∣+c ....................for (a<b)
Hence, reason is true.
A:∫13+4cosxdx=1√7log√7+tan(x/2)√7−tan(x/2)+c
For assertion, Substituting a=3, b=4, (a∫13+4cosxdx=1√7log√7+tan(x/2)√7−tan(x/2)+c
Therefore, assertion is true and reason is correct explanation for assertion
Hence, option 'A' is correct.