We have,
y=∣∣x2−|x|∣∣
On differentiating and we get,
dydx=2x−1
At point (x=−2)
Then,
(dydx)(x=−2)=|2×(−2)−1|
⇒(dydx)(x=−2)=|−5|
⇒(dydx)(x=−2)=5
\end{align}$
Now the equation of normal is
y−y1=m(x−x1)
y−3=−1m(x+2)∴fornormal
y−3=−15(x+2)
5y−15=−(x+2)
5y−15=−x−2
5y−15−x+2=0
−x+5y−13=0
x−5y+13=0
Hence, this is the
answer.