wiz-icon
MyQuestionIcon
MyQuestionIcon
1913
You visited us 1913 times! Enjoying our articles? Unlock Full Access!
Question

`A function is represented parametrically by the equation x=1+tt3,y=32t2+2t then dydxx(dydx)2 has the value equal to

Open in App
Solution

x=1+tt3,y=32t2+2t
dxdt=ddt[1t2+1t2]
dxdt=[3t42t3]
d2xdt2=[12t5+6t4]
dydt=3t32t2=[3+2tt3]
d2ydt9t4+4t3=[9+4tt4]
dydxx(dydx)2=?
dydx=dydtdxdt=(3+2tt3)(3+2tt4)=t
dydxx(dydx)2=t(t+t)t3×t2
=t(1+t)t
dydxx(dydx)2=t1t1

1093087_1164326_ans_6b95878d073f4748b1db9e3e6a2e5d1a.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon