By the law of conservation of linear momentum,
along x-axis ,
total momentum before collision=total momentum after collision
m1v0+0=m1×0+m2v2cosθ ,
or m1v0=2m1v2cosθ , (given2m2=2m1) ,
or v0=2v2cosθ .......eq1 ,
along y-axis ,
total momentum before collision=total momentum after collision
0=−m1v1+m2v2sinθ ,
or 0=−m1v0/2+2m1v2sinθ , (givenv1=v0/2) ,
or v0/4=v2sinθ .......eq2,
by squarring and adding eq1 and 2 , we get
v2=√54v0 ,
Now , change in kinetic energy will be ,
Δk=kinetic energy after collision-kinetic energy before collision ,
or Δk=1/2m1v21+1/2m2v22−1/2m1v20+0 ,
or Δk=1/2m1(v20/4)+1/2×2m1(√5/4v0)2−1/2m1v20 ,
or Δk=m1v2016=m1v2010+6