Step1:
Initial moles of H2=0.244
Initial moles of S=1
Kp=6.8×10−2
Given equation:
H2(g)+S(s)⇌H2S(g)⇒(1)
Initial moles: 0.2 1
At equilibrium : (0.2−α) (1−α) α
Here, in the above equation, we can see that hydrogen is the limiting reagent.
∴Kp=[H2S][H2]
⇒6.8×10−2=α0.2−α
1.36×10−2−(6.8×10−2)α=α
α+0.068α=1.36×10−2
α=1.36×10−21.068
α=1.273×10−2
So, at equilibrium moles of H2=0.2−α=0.21.273×10−2=0.1873
Step2:
Now, using the Ideal Gas equation,
PV=nRT→(1)
Where P= total pressure of the vessel
n= total no. of moles =(0.2−α)+(1−α)+α=1.2−α=1.2−1.273×10−2=1.1873
V= volume of vessel =1 litre
R= Ideal gas constant =0.082LatmK−1mol−1
T= total temperature =90oC=90+273=363K
Substituting all the values in eq. (1), we get
P×1=1.1873×0.082×363
⇒P=35.34atm
Step3:
Thus,
The partial pressure of H2S at equilibrium
=(mole fraction of H2S)×(total pressure)
=[1.273×10−21.1873]×35.34
=0.3789atm
≈0.38atm