A) Step 1: Find the energy of each photon.
Formula Used: E=hcλ
Given,
Wavelength of the monochromatic light, λ=632.8nm=632.8×10−9 m
Power emitted by the laser,
P=9.42 nW=9.42×10−3 W
Also,
Planck's constant, h=6.626×10−34Js
Speed of light, C=3×108 ms−1
Mass of a hydrogen atom, m=1.66×10−27 kg
The energy of each photon is given by,
E=hcλ
E=6.626×10−34×3×108632.8×10−9
E=3.141×10−19J
Step 2: Find the momentum of each photon.
Formula Used: p=hλ
The momentum of each photon is given by,
p=hλ
p=6.626×10−34632.8×10−9
p=1.05×10(−27)kgm/s
Final Answer: E=3.141×10−19J
p=1.05×10(−27) kgm/s
B) Step:1 Find the energy of each photon.
Formula Used : E−hcλ
Given,
Wavelength of the monochromatic light,
λ=632.8 nm=632.8×10−9m
Power emitted by the laser,
P=9.42 mW=9.42×10−3W
Also,
Planck's constant, h=6.626×10−34Js
Speed of light , c=3×108ms−1
Mass of a hydrogen atom, m=1.66×10−27kg
Step : 1 Find the energy of each photon.
The energy of each photon is given by,
E=hcλ
E=6.626×10−34×3×108632.8×10−9
E=3.141×10−19J
Step:2 Find the number of photons per second.
Let the number of photons arriving per second, at a target irradiated by the beam be n
Hence, the equation for power can be written as,
p=nE
n=PE
n=9.42×10−33.141×10−19
n≈3×1016photons /s
Final Answer : n≈3×1016photons/s
C) Step:1 Find the Momentum of hydrogen atom.
Formula Used: p=hλ
The momentum of each photon is given by,
p=hλ
p=6.626×10−34632.8×10−9
p=1.05×10−27 kgm/s
Step:2 Find the velocity of each photon.
Formula Used: p=mv
Momentum of the hydrogen atom is the same as the momentum of the photon.
Therefore, if the velocity of hydrogen atom is v, then,
p=mv
v=1.05×10−271.66×10−27
v=0.63 m/s
Final Answer: v=0.63 m/s