The correct option is A 253
Let the numbers in the 100's place be x, 10's place be y and1's place be z.
H T O
x y z
As, sum of the digits is 10, we have,
x+y+z=10.......(1)
As, The middle term is equal to the sum of the other two, we have
y=x+z
x−y+z=0.....(2)
As, The number will reverse if 99 is added to it, we have,
99+100x+10y+z=100z+10y+x
99x−99z=−9
x−z=−1.....(3)
⇒eqn(1)+eqn(2)
x+y+z=10
x−y+z=0
__________________
2x+2z=10
x+z=5.....................(4)
⇒eqn(3)+eqn(4)
x−z=−1
x+z=5
__________________
2x=4
x=2.....................(5)
Now, substituting eqn(5) in eqn(3)
x−z=−1
2−z=−1
z=3.....................(6)
Again, substituting eqn(5) and eqn(6) in eqn(2), we get,
x−y+z=0
2−y+3=0
y=5.....................(7)
Hence the number is 253.
Check: 253 + 99 = 352 (digits are reversed.)