The correct option is
A 2mvv2cosθLet's take the case of only one particle first.
So, one particle impinging normal on wall with velocity= vcosθ1
Also, let θ2 be the angle with which it rebounds & v2 be the velocity considering momentum conservation, we get 2 components of the motion.
(1) mv1cosθ1=−mv2cosθ2 {Normal to wall}
(2) mv1sinθ1=−mv2sinθ2 {Parallel to wall component}
From squaring and adding equation (1) & (3) we get; v1=v2 & θ1=θ2
For an elastic collision;
So, change in ⟶p normal to wall= mv1ccosθ1−(−mv2cosθ2)=2mv1cosθ1
For ν number of particle= 2mνv1cosθ1
(1) Rate of change of momentum/volume= Farce/volume
⇒ Farce F= ν[2mv1cosθ1][area×dx]/dt
So, Pressure= Farcearea=ν2mv1cosθ1areadxarea×dt
=ν2mv21cosθ
=2mνv2cosθ .