The correct option is C 12 m
The given equation is y=x−x22
Comparing the given equation with the equation of the trajectory of a projectile.
y=x tan θ−gx22 u2cos2 θ, we get
tan θ=1⇒ θ=45∘ and
g2u2cos2θ=12⇒ gu2=12⇒ u2=2g
(∵cos45∘=1√2)
hmax=u2sin2 θ2g=2gsin245∘2g=12
Thus, hmax=12 m
Alternate:
The maximum value of a function occurs at the point given by
dydx=0 and d2ydx2<0
Thus, we have
dydx=1−2x2=0⇒ x=1
and d2ydx2=−1<0
Hence, the maximum value of the given function is
ymax=1−12=12 m