wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A person decides to toss a fair coin repeatedly until he gets a head. He will make at most 3 tosses. Let the random variable Y denote the number of heads. The value of var(Y). where var(.) denotes the variance, equals:

A
78
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4964
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
764
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
10564
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 764
Given the maximum no. of tosses = 3


y = {No. of Heads} = {1, 0}

P(y = 1H) = P(H) or P(TH) or P(TTH)

=12+14+18=78

P(y=0H)=P(TTT)=18

So, probability distribution is:

y:00P(y):1878

(Y)=y1P(y1)+y2P(y2)

=0×18+1×78=78

E(Y2)=×02×(17)+12×(78)

=78

Variance (Y)=E(Y2)[E(Y)]2

=78(78)2

=784964

=564964=764

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Expectation
ENGINEERING MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon