LetustakethepointasP(x,y)whichshouldbeequidistantfromthegivenpointsA(x1,y1)=(5,4)&B(x2,y2)=(1,6).Usingthedistanceformulad=√(x2−x1)2+(y2−y1)2,wegetAP=√(x−x1)2+(y−y1)2=√(x−5)2+(y−4)2andBP=√(x−x2)2+(y−y2)2=√(x−1)2+(y−6)2.SincePisequidistantfromthepointsA&B,AP=BP.⟹√(x−5)2+(y−4)2=√(x−1)2+(y−6)2⟹2x−y−1=0........(i)Thisisthelocus(L)ofP.ItwillpassthroughthemidpointbetweenA&Btheco−ordinatesofwhichare(x1+x22,y1+y22)=(5+12,4+62)=(3,5).Putting(x,y)=(3,5)in(i)wehaveL.H.S.=2×3−5−1=0=R.H.S.SoLpassesthroughthemidpointofAB.∴ListheperpendicularbisectorofAB.ThereareinfinitenumberofpointsonLoneofwhichis(3,5).Ans−ThereareinfinitenumberofpointsonLoneofwhichis(3,5).