1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

# A polynomial whose degree is not defined is .

Open in App
Solution

## Zero Polynomial:–––––––––––––––––––––– ∙ We learnt earlier that f(x)=anxn+an–1xn–1+…+a1x+a0f(x)=anxn+an–1xn–1+…+a1x+a0 is a polynomial. ∙ Now, a zero polynomial is a special case of the polynomial where all the coefficients an,an–1,an–2,……a1,a0 are zeros (0). Hence, the polynomial becomes f(x)=0 or the corresponding polynomial function is the constant function with value 0. ∙ f(x)=0, g(x)=0x, h(x)=0x2,p(x)=0x3, q(x)=0x12, r(x)=0x50 etc. are all examples of zero polynomials. ∙ As seen in the examples above, the degree of a zero polynomial can be 0, 1, 2, 3, 12, 50, and so on, indicating that the degree of a zero polynomial is not a fixed number. As a result, the degree of a zero polynomial isn't defined. Note:––––––– The zero polynomial is considered as the additive identity of the polynomials.

Suggest Corrections
3
Join BYJU'S Learning Program
Related Videos
Degree of a Polynomial
MATHEMATICS
Watch in App
Explore more
Join BYJU'S Learning Program